BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29908126)

  • 1. Transglutaminase type 2 in the regulation of proteostasis.
    D'Eletto M; Rossin F; Fedorova O; Farrace MG; Piacentini M
    Biol Chem; 2019 Jan; 400(2):125-140. PubMed ID: 29908126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions.
    Diaz-Hidalgo L; Altuntas S; Rossin F; D'Eletto M; Marsella C; Farrace MG; Falasca L; Antonioli M; Fimia GM; Piacentini M
    Biochim Biophys Acta; 2016 Aug; 1863(8):2084-92. PubMed ID: 27169926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Multifaceted Role of HSF1 in Pathophysiology: Focus on Its Interplay with TG2.
    Occhigrossi L; D'Eletto M; Barlev N; Rossin F
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34198675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation.
    Altuntas S; Rossin F; Marsella C; D'Eletto M; Diaz-Hidalgo L; Farrace MG; Campanella M; Antonioli M; Fimia GM; Piacentini M
    Oncotarget; 2015 Dec; 6(42):44941-54. PubMed ID: 26702927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of transglutaminase 2 under different oxidative stress conditions.
    Caccamo D; Currò M; Ferlazzo N; Condello S; Ientile R
    Amino Acids; 2012 Feb; 42(2-3):1037-43. PubMed ID: 21805137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of distinct sub-cellular location of transglutaminase type II: changes in intracellular distribution in physiological and pathological states.
    Piacentini M; D'Eletto M; Farrace MG; Rodolfo C; Del Nonno F; Ippolito G; Falasca L
    Cell Tissue Res; 2014 Dec; 358(3):793-805. PubMed ID: 25209703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TG2 regulates the heat-shock response by the post-translational modification of HSF1.
    Rossin F; Villella VR; D'Eletto M; Farrace MG; Esposito S; Ferrari E; Monzani R; Occhigrossi L; Pagliarini V; Sette C; Cozza G; Barlev NA; Falasca L; Fimia GM; Kroemer G; Raia V; Maiuri L; Piacentini M
    EMBO Rep; 2018 Jul; 19(7):. PubMed ID: 29752334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transglutaminase 2: a multi-functional protein in multiple subcellular compartments.
    Park D; Choi SS; Ha KS
    Amino Acids; 2010 Aug; 39(3):619-31. PubMed ID: 20148342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-cell Autonomous Maintenance of Proteostasis by Molecular Chaperones and Its Molecular Mechanism.
    Takeuchi T
    Biol Pharm Bull; 2018; 41(6):843-849. PubMed ID: 29863073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins.
    D'Eletto M; Farrace MG; Rossin F; Strappazzon F; Giacomo GD; Cecconi F; Melino G; Sepe S; Moreno S; Fimia GM; Falasca L; Nardacci R; Piacentini M
    Cell Death Differ; 2012 Jul; 19(7):1228-38. PubMed ID: 22322858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins.
    Carver JA; Ecroyd H; Truscott RJW; Thorn DC; Holt C
    Acc Chem Res; 2018 Mar; 51(3):745-752. PubMed ID: 29442498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans.
    Das R; Melo JA; Thondamal M; Morton EA; Cornwell AB; Crick B; Kim JH; Swartz EW; Lamitina T; Douglas PM; Samuelson AV
    PLoS Genet; 2017 Oct; 13(10):e1007038. PubMed ID: 29036198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BAG3-mediated proteostasis at a glance.
    Klimek C; Kathage B; Wördehoff J; Höhfeld J
    J Cell Sci; 2017 Sep; 130(17):2781-2788. PubMed ID: 28808089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling.
    van Oosten-Hawle P; Morimoto RI
    Genes Dev; 2014 Jul; 28(14):1533-43. PubMed ID: 25030693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Autophagy-Lysosomal Pathways and Their Emerging Roles in Modulating Proteostasis in Tumors.
    Dong Z; Cui H
    Cells; 2018 Dec; 8(1):. PubMed ID: 30577555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transglutaminase type 2 plays a key role in the pathogenesis of Mycobacterium tuberculosis infection.
    Palucci I; Matic I; Falasca L; Minerva M; Maulucci G; De Spirito M; Petruccioli E; Goletti D; Rossin F; Piacentini M; Delogu G
    J Intern Med; 2018 Mar; 283(3):303-313. PubMed ID: 29205566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Catalytic Activity of Transglutaminases in the Context of Autophagic Responses.
    D'Eletto M; Farrace MG; Piacentini M; Rossin F
    Methods Enzymol; 2017; 587():511-520. PubMed ID: 28253975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis In Aging Cells.
    Margulis B; Tsimokha A; Zubova S; Guzhova I
    Cells; 2020 May; 9(5):. PubMed ID: 32456366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeostatic Roles of the Proteostasis Network in Dendrites.
    Lottes EN; Cox DN
    Front Cell Neurosci; 2020; 14():264. PubMed ID: 33013325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteostasis and the aging proteome in health and disease.
    Morimoto RI; Cuervo AM
    J Gerontol A Biol Sci Med Sci; 2014 Jun; 69 Suppl 1(Suppl 1):S33-8. PubMed ID: 24833584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.