These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29908396)

  • 1. Potential for U sequestration with select minerals and sediments via base treatment.
    Emerson HP; Di Pietro S; Katsenovich Y; Szecsody J
    J Environ Manage; 2018 Oct; 223():108-114. PubMed ID: 29908396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.
    Emerson HP; Di Pietro S; Katsenovich Y; Szecsody J
    J Environ Radioact; 2017 Feb; 167():150-159. PubMed ID: 28007440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.
    Szecsody JE; Truex MJ; Qafoku NP; Wellman DM; Resch T; Zhong L
    J Contam Hydrol; 2013 Aug; 151():155-75. PubMed ID: 23851265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms.
    Alam MS; Cheng T
    J Contam Hydrol; 2014 Aug; 164():72-87. PubMed ID: 24954631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition effect of secondary phosphate mineral precipitation on uranium release from contaminated sediments.
    Shi Z; Liu C; Zachara JM; Wang Z; Deng B
    Environ Sci Technol; 2009 Nov; 43(21):8344-9. PubMed ID: 19924967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of calcite on uranium(VI) reactive transport in the groundwater-river mixing zone.
    Ma R; Liu C; Greskowiak J; Prommer H; Zachara J; Zheng C
    J Contam Hydrol; 2014 Jan; 156():27-37. PubMed ID: 24240103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of aluminum, uranium, and co-contaminants precipitation and adsorption during titration of acidic sediments.
    Tang G; Luo W; Watson DB; Brooks SC; Gu B
    Environ Sci Technol; 2013 Jun; 47(11):5787-93. PubMed ID: 23641798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate-Induced Immobilization of Uranium in Hanford Sediments.
    Pan Z; Giammar DE; Mehta V; Troyer LD; Catalano JG; Wang Z
    Environ Sci Technol; 2016 Dec; 50(24):13486-13494. PubMed ID: 27993066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. U(VI) adsorption on aquifer sediments at the Hanford Site.
    Um W; Serne RJ; Brown CF; Last GV
    J Contam Hydrol; 2007 Aug; 93(1-4):255-69. PubMed ID: 17499879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequestering uranium and technetium through co-precipitation with aluminum in a contaminated acidic environment.
    Luo W; Kelly SD; Kemner KM; Watson D; Zhou J; Jardine PM; Gu B
    Environ Sci Technol; 2009 Oct; 43(19):7516-22. PubMed ID: 19848170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in uranium speciation through a depth sequence of contaminated Hanford sediments.
    Catalano JG; McKinley JP; Zachara JM; Heald SM; Smith SC; Brown GE
    Environ Sci Technol; 2006 Apr; 40(8):2517-24. PubMed ID: 16683586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water.
    Ahmed B; Cao B; Mishra B; Boyanov MI; Kemner KM; Fredrickson JK; Beyenal H
    Water Res; 2012 Sep; 46(13):3989-98. PubMed ID: 22683408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advective removal of intraparticle uranium from contaminated vadose zone sediments, Hanford, U.S.
    Ilton ES; Qafoku NP; Liu C; Moore DA; Zachara JM
    Environ Sci Technol; 2008 Mar; 42(5):1565-71. PubMed ID: 18441804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system.
    Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D
    J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of kinetic rate law parameters for the dissolution of natural autunite in the presence of aqueous bicarbonate ions at high concentrations.
    Gudavalli R; Katsenovich Y; Wellman D
    J Environ Radioact; 2018 Oct; 190-191():1-9. PubMed ID: 29729585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unrefined humic substances as a potential low-cost amendment for the management of acidic groundwater contamination.
    Gonzalez-Raymat H; Anagnostopoulos V; Denham M; Cai Y; Katsenovich YP
    J Environ Manage; 2018 Apr; 212():210-218. PubMed ID: 29433000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments.
    Wang G; Um W; Wang Z; Reinoso-Maset E; Washton NM; Mueller KT; Perdrial N; O'Day PA; Chorover J
    Environ Sci Technol; 2017 Oct; 51(19):11011-11019. PubMed ID: 28884577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling uranium transport in acidic contaminated groundwater with base addition.
    Zhang F; Luo W; Parker JC; Brooks SC; Watson DB; Jardine PM; Gu B
    J Hazard Mater; 2011 Jun; 190(1-3):863-8. PubMed ID: 21531075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially resolved U(VI) partitioning and speciation: implications for plume scale behavior of contaminant U in the Hanford vadose zone.
    Wan J; Kim Y; Tokunaga TK; Wang Z; Dixit S; Steefel CI; Saiz E; Kunz M; Tamura N
    Environ Sci Technol; 2009 Apr; 43(7):2247-53. PubMed ID: 19452870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.