These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29908396)
41. Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. Gu B; Ku YK; Jardine PM Environ Sci Technol; 2004 Jun; 38(11):3184-8. PubMed ID: 15224753 [TBL] [Abstract][Full Text] [Related]
42. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado. Hyun SP; Fox PM; Davis JA; Campbell KM; Hayes KF; Long PE Environ Sci Technol; 2009 Dec; 43(24):9368-73. PubMed ID: 20000531 [TBL] [Abstract][Full Text] [Related]
43. Dissolved Carbonate and pH Control the Dissolution of Uranyl Phosphate Minerals in Flow-Through Porous Media. Reinoso-Maset E; Perdrial N; Steefel CI; Um W; Chorover J; O'Day PA Environ Sci Technol; 2020 May; 54(10):6031-6042. PubMed ID: 32364719 [TBL] [Abstract][Full Text] [Related]
44. Complexation by Organic Matter Controls Uranium Mobility in Anoxic Sediments. Bone SE; Cliff J; Weaver K; Takacs CJ; Roycroft S; Fendorf S; Bargar JR Environ Sci Technol; 2020 Feb; 54(3):1493-1502. PubMed ID: 31886668 [TBL] [Abstract][Full Text] [Related]
45. Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation. Dutova EM; Nikitenkov AN; Pokrovskiy VD; Banks D; Frengstad BS; Parnachev VP J Environ Radioact; 2017 Nov; 178-179():63-76. PubMed ID: 28780371 [TBL] [Abstract][Full Text] [Related]
46. Mechanism of uranium removal from the aqueous solution by elemental iron. Noubactep C; Schöner A; Meinrath G J Hazard Mater; 2006 May; 132(2-3):202-12. PubMed ID: 16271827 [TBL] [Abstract][Full Text] [Related]
47. Influence of dissolved sodium and cesium on uranyl oxide hydrate solubility. Giammar DE; Hering JG Environ Sci Technol; 2004 Jan; 38(1):171-9. PubMed ID: 14740733 [TBL] [Abstract][Full Text] [Related]
48. Elucidating mobilization mechanisms of uranium during recharge of river water to contaminated groundwater. Paradis CJ; Hoss KN; Meurer CE; Hatami JL; Dangelmayr MA; Tigar AD; Johnson RH J Contam Hydrol; 2022 Dec; 251():104076. PubMed ID: 36148719 [TBL] [Abstract][Full Text] [Related]
49. Time scales for sorption-desorption and surface precipitation of uranyl on goethite. Giammar DE; Hering JG Environ Sci Technol; 2001 Aug; 35(16):3332-7. PubMed ID: 11529573 [TBL] [Abstract][Full Text] [Related]
50. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Wu Y; Wang Y; Xie X Sci Total Environ; 2014 Feb; 472():809-17. PubMed ID: 24342086 [TBL] [Abstract][Full Text] [Related]
51. Variation of groundwater and mineral composition of in situ leaching uranium in Bayanwula mining area, China. Li H; Muhammad AM; Tang Z PLoS One; 2024; 19(7):e0303595. PubMed ID: 38995911 [TBL] [Abstract][Full Text] [Related]
52. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater. Jing C; Landsberger S; Li YL J Environ Radioact; 2017 Sep; 175-176():1-6. PubMed ID: 28407570 [TBL] [Abstract][Full Text] [Related]
53. Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Fuller CC; Bargar JR; Davis JA Environ Sci Technol; 2003 Oct; 37(20):4642-9. PubMed ID: 14594373 [TBL] [Abstract][Full Text] [Related]
54. Linearity and reversibility of iodide adsorption on sediments from Hanford, Washington under water saturated conditions. Um W; Serne RJ; Krupka KM Water Res; 2004 Apr; 38(8):2009-16. PubMed ID: 15087181 [TBL] [Abstract][Full Text] [Related]
55. Diffusive release of uranium from contaminated sediments into capillary fringe pore water. Rod KA; Wellman DM; Flury M; Pierce EM; Harsh JB J Contam Hydrol; 2012 Oct; 140-141():164-72. PubMed ID: 23041367 [TBL] [Abstract][Full Text] [Related]
56. Potential remediation approach for uranium-contaminated groundwaters through potassium uranyl vanadate precipitation. Tokunaga TK; Kim Y; Wan J Environ Sci Technol; 2009 Jul; 43(14):5467-71. PubMed ID: 19708383 [TBL] [Abstract][Full Text] [Related]
57. Solution equilibria of uranyl minerals: Role of the common groundwater ions calcium and carbonate. Stanley DM; Wilkin RT J Hazard Mater; 2019 Sep; 377():315-320. PubMed ID: 31173981 [TBL] [Abstract][Full Text] [Related]
58. Sorption of U(VI) onto natural soils and different mineral compositions: The batch method and spectroscopy analysis. Shi Y; He J; Yang X; Zhou W; Wang J; Li X; Liu C J Environ Radioact; 2019 Jul; 203():163-171. PubMed ID: 30921606 [TBL] [Abstract][Full Text] [Related]
59. Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site. Li D; Seaman JC; Chang HS; Jaffe PR; Koster van Groos P; Jiang DT; Chen N; Lin J; Arthur Z; Pan Y; Scheckel KG; Newville M; Lanzirotti A; Kaplan DI J Environ Radioact; 2014 May; 131():40-6. PubMed ID: 24238918 [TBL] [Abstract][Full Text] [Related]
60. Study of uranium(VI) and radium(II) sorption at trace level on kaolinite using a multisite ion exchange model. Reinoso-Maset E; Ly J J Environ Radioact; 2016 Jun; 157():136-48. PubMed ID: 27077702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]