These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29908413)

  • 1. Rapid elucidation of chemical shift correlations in complex NMR spectra of organic molecules: Two-dimensional Hadamard pure shift NMR spectroscopy.
    Kakita VMR; Kupče Ē; Bharatam J; Hosur RV
    J Magn Reson; 2018 Aug; 293():77-81. PubMed ID: 29908413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hadamard Homonuclear Broadband Decoupled TOCSY NMR: Improved Efficacy in Detecting Long-range Chemical Shift Correlations.
    Kakita VM; Hosur RV
    Chemphyschem; 2016 Dec; 17(24):4037-4042. PubMed ID: 27727495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Band-selective excited ultrahigh resolution PSYCHE-TOCSY: fast screening of organic molecules and complex mixtures.
    Kakita VM; Vemulapalli SP; Bharatam J
    Magn Reson Chem; 2016 Apr; 54(4):308-14. PubMed ID: 26939986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-in-one NMR spectroscopy of small organic molecules: complete chemical shift assignment from a single NMR experiment.
    Rao Kakita VM; Hosur RV
    RSC Adv; 2020 Jun; 10(36):21174-21179. PubMed ID: 35518727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time homonuclear broadband and band-selective decoupled pure-shift ROESY.
    Kakita VM; Bharatam J
    Magn Reson Chem; 2014 Jul; 52(7):389-94. PubMed ID: 24777641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-SERF Editing in Two-Dimensional Pure-Shift Total Correlation Spectroscopy: Scalar Coupling Measurements for a Group of Spins in Organic Molecules.
    Rao Kakita VM; Joshi MV; Hosur RV
    Chemphyschem; 2019 Jun; 20(12):1559-1566. PubMed ID: 30997947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (3, 2)D
    Brodaczewska N; Košťálová Z; Uhrín D
    J Biomol NMR; 2018 Feb; 70(2):115-122. PubMed ID: 29327222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical aspects of real-time pure shift HSQC experiments.
    Kiraly P; Nilsson M; Morris GA
    Magn Reson Chem; 2018 Oct; 56(10):993-1005. PubMed ID: 29274287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of Hadamard spectroscopy to automated structure verification in high-throughput NMR.
    Ruan K; Yang S; Van Sant KA; Likos JJ
    Magn Reson Chem; 2009 Aug; 47(8):693-700. PubMed ID: 19496061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of pure shift NMR and chemical shift selective filters for analysis of Fischer-Tropsch waste-water.
    Zhao Q; Liu Y; Ma H; Qiao Y; Chao J; Hou X; Wang Y; Wang Y
    Anal Chim Acta; 2020 May; 1110():131-140. PubMed ID: 32278388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR supersequences with real-time homonuclear broadband decoupling: Sequential acquisition of protein and small molecule spectra in a single experiment.
    Kakita VMR; Rachineni K; Bopardikar M; Hosur RV
    J Magn Reson; 2018 Dec; 297():108-112. PubMed ID: 30384129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical alignment and full resolution pattern recognition of 2D NMR spectra: application to nematode chemical ecology.
    Robinette SL; Ajredini R; Rasheed H; Zeinomar A; Schroeder FC; Dossey AT; Edison AS
    Anal Chem; 2011 Mar; 83(5):1649-57. PubMed ID: 21314130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time J-upscaling in two-dimensional pure shift diagonal NMR: Simultaneous resolution enhancement in chemical shifts and scalar couplings.
    Kakita VMR; Hosur RV
    J Magn Reson; 2018 Nov; 296():176-180. PubMed ID: 30286413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-resolution total correlation NMR spectroscopy.
    Foroozandeh M; Adams RW; Nilsson M; Morris GA
    J Am Chem Soc; 2014 Aug; 136(34):11867-9. PubMed ID: 25111063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleaved Dual NMR Acquisition of Equivalent Transfer Pathways in TOCSY and HSQC Experiments.
    Nolis P; Motiram-Corral K; Pérez-Trujillo M; Parella T
    Chemphyschem; 2019 Feb; 20(3):356-360. PubMed ID: 30485623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the use of Generalized Indirect Covariance to reconstruct pure shift NMR spectra: Current Pros and Cons.
    Fredi A; Nolis P; Cobas C; Martin GE; Parella T
    J Magn Reson; 2016 May; 266():16-22. PubMed ID: 27003379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast experiments for structure elucidation of small molecules: Hadamard NMR with multiple receivers.
    Gierth P; Codina A; Schumann F; Kovacs H; Kupče Ē
    Magn Reson Chem; 2015 Nov; 53(11):940-4. PubMed ID: 26302997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-real-time acquisition for fast pure shift NMR at maximum resolution.
    Kiraly P; Nilsson M; Morris GA
    J Magn Reson; 2018 Aug; 293():19-27. PubMed ID: 29802964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. True chemical shift correlation maps: a TOCSY experiment with pure shifts in both dimensions.
    Morris GA; Aguilar JA; Evans R; Haiber S; Nilsson M
    J Am Chem Soc; 2010 Sep; 132(37):12770-2. PubMed ID: 20795722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic separation of (13) C NMR spectra of complex isomeric mixtures by the CSSF-TOCSY-INEPT experiment.
    Yang L; Moreno A; Fieber W; Brauchli R; Sommer H
    Magn Reson Chem; 2015 Apr; 53(4):304-8. PubMed ID: 25616134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.