BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 29908504)

  • 21. Evaluation of Sentinel-3A OLCI Products Derived Using the Case-2 Regional CoastColour Processor over the Baltic Sea.
    Kyryliuk D; Kratzer S
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430993
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom.
    Bunse C; Bertos-Fortis M; Sassenhagen I; Sildever S; Sjöqvist C; Godhe A; Gross S; Kremp A; Lips I; Lundholm N; Rengefors K; Sefbom J; Pinhassi J; Legrand C
    Front Microbiol; 2016; 7():517. PubMed ID: 27148206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesoscale survey of western and northwestern Irish lakes--spatial and aestival patterns in trophic status and phytoplankton community structure.
    Touzet N
    J Environ Manage; 2011 Oct; 92(10):2844-54. PubMed ID: 21764507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Niche separation of Baltic Sea cyanobacteria during bloom events by species interactions and autecological preferences.
    Eigemann F; Schwartke M; Schulz-Vogt H
    Harmful Algae; 2018 Feb; 72():65-73. PubMed ID: 29413385
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal and spatial variability of phytoplankton monitored by a combination of monitoring buoys, pigment analysis and fast screening microscopy in the Fehmarn Belt Estuary.
    Schlüter L; Møhlenberg F; Kaas H
    Environ Monit Assess; 2014 Aug; 186(8):5167-84. PubMed ID: 24788839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms.
    Aguilar-Maldonado JA; Santamaría-Del-Ángel E; Gonzalez-Silvera A; Sebastiá-Frasquet MT
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-optical evidence for increasing
    Orkney A; Platt T; Narayanaswamy BE; Kostakis I; Bouman HA
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190357. PubMed ID: 32862820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Eutrophication Increases Phytoplankton Methylmercury Concentrations in a Coastal Sea-A Baltic Sea Case Study.
    Soerensen AL; Schartup AT; Gustafsson E; Gustafsson BG; Undeman E; Björn E
    Environ Sci Technol; 2016 Nov; 50(21):11787-11796. PubMed ID: 27704806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of sea ice and wind speed on phytoplankton spring bloom in central and southern Baltic Sea.
    Pärn O; Lessin G; Stips A
    PLoS One; 2021; 16(3):e0242637. PubMed ID: 33657117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The history of cyanobacterial blooms in the Baltic Sea.
    Finni T; Kononen K; Olsonen R; Wallström K
    Ambio; 2001 Aug; 30(4-5):172-8. PubMed ID: 11697246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing impacts of invasive phytoplankton: the Baltic Sea case.
    Olenina I; Wasmund N; Hajdu S; Jurgensone I; Gromisz S; Kownacka J; Toming K; Vaiciūte D; Olenin S
    Mar Pollut Bull; 2010 Oct; 60(10):1691-700. PubMed ID: 20655073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A ground-based remote sensing system for high-frequency and real-time monitoring of phytoplankton blooms.
    Wang W; Shi K; Zhang Y; Li N; Sun X; Zhang D; Zhang Y; Qin B; Zhu G
    J Hazard Mater; 2022 Oct; 439():129623. PubMed ID: 35868088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eutrophication, harmful algal blooms and species diversity in phytoplankton communities: examples from the Baltic Sea.
    Kononen K
    Ambio; 2001 Aug; 30(4-5):184-9. PubMed ID: 11697248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tracking spatio-temporal dynamics of POC sources in eutrophic lakes by remote sensing.
    Xu J; Lei S; Bi S; Li Y; Lyu H; Xu J; Xu X; Mu M; Miao S; Zeng S; Zheng Z
    Water Res; 2020 Jan; 168():115162. PubMed ID: 31629230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of cyanobacteria biovolume in water reservoirs by MERIS sensor.
    Medina-Cobo M; Domínguez JA; Quesada A; de Hoyos C
    Water Res; 2014 Oct; 63():10-20. PubMed ID: 24971813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean.
    Horvat C; Jones DR; Iams S; Schroeder D; Flocco D; Feltham D
    Sci Adv; 2017 Mar; 3(3):e1601191. PubMed ID: 28435859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent changes in trophic state of the Baltic Sea along SW coast of Finland.
    Raateoja M; Seppälä J; Kuosa H; Myrberg K
    Ambio; 2005 May; 34(3):188-91. PubMed ID: 16042275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hot moments and hotspots of cyanobacteria hyperblooms in the Curonian Lagoon (SE Baltic Sea) revealed via remote sensing-based retrospective analysis.
    Vaičiūtė D; Bučas M; Bresciani M; Dabulevičienė T; Gintauskas J; Mėžinė J; Tiškus E; Umgiesser G; Morkūnas J; De Santi F; Bartoli M
    Sci Total Environ; 2021 May; 769():145053. PubMed ID: 33736231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.
    Tholkapiyan M; Shanmugam P; Suresh T
    Environ Monit Assess; 2014 Jul; 186(7):4129-37. PubMed ID: 24554022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new approach to quantify chlorophyll-a over inland water targets based on multi-source remote sensing data.
    Wang J; Chen X
    Sci Total Environ; 2024 Jan; 906():167631. PubMed ID: 37806589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.