BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 29908562)

  • 1. Valorification of crude glycerol for pure fractions of docosahexaenoic acid and β-carotene production by using Schizochytrium limacinum and Blakeslea trispora.
    Bindea M; Rusu B; Rusu A; Trif M; Leopold LF; Dulf F; Vodnar DC
    Microb Cell Fact; 2018 Jun; 17(1):97. PubMed ID: 29908562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid.
    Ethier S; Woisard K; Vaughan D; Wen Z
    Bioresour Technol; 2011 Jan; 102(1):88-93. PubMed ID: 20570140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.
    Pyle DJ; Garcia RA; Wen Z
    J Agric Food Chem; 2008 Jun; 56(11):3933-9. PubMed ID: 18465872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Industrial glycerol as a supplementary carbon source in the production of beta-carotene by Blakeslea trispora.
    Mantzouridou F; Naziri E; Tsimidou MZ
    J Agric Food Chem; 2008 Apr; 56(8):2668-75. PubMed ID: 18370396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization.
    Abad S; Turon X
    Mar Drugs; 2015 Dec; 13(12):7275-84. PubMed ID: 26690180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources.
    Li J; Liu R; Chang G; Li X; Chang M; Liu Y; Jin Q; Wang X
    Bioresour Technol; 2015 Feb; 177():51-7. PubMed ID: 25479393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an alternative medium via completely replaces the medium components by mixed wastewater and crude glycerol for efficient production of docosahexaenoic acid by Schizochytrium sp.
    Wang SK; Tian YT; Dai YR; Wang D; Liu KC; Cui YH
    Chemosphere; 2022 Mar; 291(Pt 1):132868. PubMed ID: 34767848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of high docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry.
    Song X; Zang X; Zhang X
    J Oleo Sci; 2015; 64(2):197-204. PubMed ID: 25748379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896.
    Choudhari SM; Ananthanarayan L; Singhal RS
    Bioresour Technol; 2008 May; 99(8):3166-73. PubMed ID: 17637505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of beta-carotene production from synthetic medium by Blakeslea trispora: a mathematical modeling.
    Mantzouridou F; Roukasa T; Kotzekidoua P; Liakopoulou M
    Appl Biochem Biotechnol; 2002 May; 101(2):153-75. PubMed ID: 12049204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Lipid Production by
    Talbierz S; Dębowski M; Kujawska N; Kazimierowicz J; Zieliński M
    Int J Environ Res Public Health; 2022 Mar; 19(5):. PubMed ID: 35270800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing docosahexaenoic acid production of Schizochytrium sp. by optimizing fermentation using central composite design.
    Ding J; Fu Z; Zhu Y; He J; Ma L; Bu D
    BMC Biotechnol; 2022 Dec; 22(1):39. PubMed ID: 36494804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions.
    Sahin D; Tas E; Altindag UH
    AMB Express; 2018 Jan; 8(1):7. PubMed ID: 29368055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid.
    Huang TY; Lu WC; Chu IM
    Bioresour Technol; 2012 Nov; 123():8-14. PubMed ID: 22929740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of hydrolytic enzymes and oxidative stress in autolysis and morphology of Blakeslea trispora during beta-carotene production in submerged fermentation.
    Nanou K; Roukas T; Kotzekidou P
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):447-53. PubMed ID: 17103162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation.
    Nanou K; Roukas T
    Bioresour Technol; 2016 Mar; 203():198-203. PubMed ID: 26724551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Media optimization for the production of beta-carotene by Blakeslea trispora: a statistical approach.
    Choudhari S; Singhal R
    Bioresour Technol; 2008 Mar; 99(4):722-30. PubMed ID: 17379513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of butanol on high value product production in Schizochytrium limacinum B4D1.
    Zhang K; Chen L; Liu J; Gao F; He R; Chen W; Guo W; Chen S; Li D
    Enzyme Microb Technol; 2017 Jul; 102():9-15. PubMed ID: 28465065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient.
    Chang G; Gao N; Tian G; Wu Q; Chang M; Wang X
    Bioresour Technol; 2013 Aug; 142():400-6. PubMed ID: 23747449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction and analysis of the genome-scale metabolic model of schizochytrium limacinum SR21 for docosahexaenoic acid production.
    Ye C; Qiao W; Yu X; Ji X; Huang H; Collier JL; Liu L
    BMC Genomics; 2015 Oct; 16():799. PubMed ID: 26475325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.