These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29908609)

  • 1. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part I: Theory and validation at low acoustic pressure amplitudes.
    Trujillo FJ
    Ultrason Sonochem; 2018 Oct; 47():75-98. PubMed ID: 29908609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part II: Application to ultrasonic cavitation.
    Trujillo FJ
    Ultrason Sonochem; 2020 Jul; 65():105056. PubMed ID: 32172147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.
    Dogan H; Popov V
    Ultrason Sonochem; 2016 May; 30():87-97. PubMed ID: 26611813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.
    Louisnard O
    Ultrason Sonochem; 2012 Jan; 19(1):56-65. PubMed ID: 21764348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs).
    Vanhille C
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number.
    Jamshidi R; Brenner G
    Ultrasonics; 2013 Apr; 53(4):842-8. PubMed ID: 23290824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
    Louisnard O; Cogné C; Labouret S; Montes-Quiroz W; Peczalski R; Baillon F; Espitalier F
    Ultrason Sonochem; 2015 Sep; 26():186-192. PubMed ID: 25800984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid.
    Tejedor Sastre MT; Vanhille C
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear ultrasonic propagation in bubbly liquids: a numerical model.
    Vanhille C; Campos-Pozuelo C
    Ultrasound Med Biol; 2008 May; 34(5):792-808. PubMed ID: 18314254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical model for the study of the difference frequency generated from nonlinear mixing of standing ultrasonic waves in bubbly liquids.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Jan; 34():881-888. PubMed ID: 27773316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.
    Zhang Y; Du X
    Ultrason Sonochem; 2015 Sep; 26():119-127. PubMed ID: 25771332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.
    Kanagawa T
    J Acoust Soc Am; 2015 May; 137(5):2642-54. PubMed ID: 25994696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.
    Liu G; Jayathilake PG; Khoo BC
    Ultrasonics; 2014 Feb; 54(2):576-85. PubMed ID: 24070825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.
    Doc JB; Conoir JM; Marchiano R; Fuster D
    J Acoust Soc Am; 2016 Apr; 139(4):1703. PubMed ID: 27106317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical models for the study of the nonlinear frequency mixing in two and three-dimensional resonant cavities filled with a bubbly liquid.
    Tejedor Sastre MT; Vanhille C
    Ultrason Sonochem; 2017 Nov; 39():597-610. PubMed ID: 28732985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weakly nonlinear propagation of focused ultrasound in bubbly liquids with a thermal effect: Derivation of two cases of Khokolov-Zabolotskaya-Kuznetsoz equations.
    Kagami S; Kanagawa T
    Ultrason Sonochem; 2022 Aug; 88():105911. PubMed ID: 35810619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear frequency mixing in a resonant cavity: numerical simulations in a bubbly liquid.
    Vanhille C; Campos-Pozuelo C; Sinha DN
    Ultrasonics; 2014 Dec; 54(8):2051-4. PubMed ID: 25064635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations.
    Sojahrood AJ; Li Q; Haghi H; Karshafian R; Porter TM; Kolios MC
    Ultrason Sonochem; 2023 May; 95():106319. PubMed ID: 36931196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic bright solitons propagation in bubbly liquids.
    Yu J; Zhang J
    J Acoust Soc Am; 2024 Aug; 156(2):839-850. PubMed ID: 39116354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.