These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2990906)

  • 1. Regulation of the expression of the tufB operon: DNA sequences directly involved in the stringent control.
    Mizushima-Sugano J; Kaziro Y
    EMBO J; 1985 Apr; 4(4):1053-8. PubMed ID: 2990906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective inhibition of transcription of the E. coli tufB operon by guanosine-5'-diphosphate-3'-diphosphate.
    Mizushima-Sugano J; Miyajima A; Kaziro Y
    Mol Gen Genet; 1983; 189(2):185-92. PubMed ID: 6343785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the gene for the stringent starvation protein of Escherichia coli.
    Serizawa H; Fukuda R
    Nucleic Acids Res; 1987 Feb; 15(3):1153-63. PubMed ID: 3029697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription of the E. coli tufB gene: cotranscription with four tRNA genes and inhibition by guanosine-5'-diphosphate-3'-diphosphate.
    Miyajima A; Shibuya M; Kuchino Y; Kaziro Y
    Mol Gen Genet; 1981; 183(1):13-9. PubMed ID: 7035813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription of the tRNA-tufB operon of Escherichia coli: activation, termination and antitermination.
    van Delft JH; Mariñon B; Schmidt DS; Bosch L
    Nucleic Acids Res; 1987 Nov; 15(22):9515-30. PubMed ID: 3317280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the relA1 mutation and a comparison of relA1 with new relA null alleles in Escherichia coli.
    Metzger S; Schreiber G; Aizenman E; Cashel M; Glaser G
    J Biol Chem; 1989 Dec; 264(35):21146-52. PubMed ID: 2556396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PpGpp regulates the binding of two RNA polymerase molecules to the tyrT promoter.
    Travers AA; Lamond AI; Mace HA
    Nucleic Acids Res; 1982 Aug; 10(16):5043-57. PubMed ID: 6291001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoter selectivity of Escherichia coli RNA polymerase. Differential stringent control of the multiple promoters from ribosomal RNA and protein operons.
    Kajitani M; Ishihama A
    J Biol Chem; 1984 Feb; 259(3):1951-7. PubMed ID: 6363418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate.
    Chiaramello AE; Zyskind JW
    J Bacteriol; 1990 Apr; 172(4):2013-9. PubMed ID: 1690706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter domain mediates guanosine tetraphosphate activation of the histidine operon.
    Riggs DL; Mueller RD; Kwan HS; Artz SW
    Proc Natl Acad Sci U S A; 1986 Dec; 83(24):9333-7. PubMed ID: 3540936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies in vivo on Escherichia coli RNA polymerase mutants altered in the stringent response.
    Baracchini E; Glass R; Bremer H
    Mol Gen Genet; 1988 Aug; 213(2-3):379-87. PubMed ID: 2460732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tRNATyr promoter with an altered in vitro response to ppgpp.
    Travers AA
    J Mol Biol; 1980 Jul; 141(1):91-7. PubMed ID: 6159476
    [No Abstract]   [Full Text] [Related]  

  • 13. Promoter selectivity of Escherichia coli RNA polymerase: omega factor is responsible for the ppGpp sensitivity.
    Igarashi K; Fujita N; Ishihama A
    Nucleic Acids Res; 1989 Nov; 17(21):8755-65. PubMed ID: 2685748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro.
    Barker MM; Gaal T; Josaitis CA; Gourse RL
    J Mol Biol; 2001 Jan; 305(4):673-88. PubMed ID: 11162084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E coli RNA polymerase-rRNA promoter interaction and the effect of ppGpp.
    Hamming J; Ab G; Gruber M
    Nucleic Acids Res; 1980 Sep; 8(17):3947-63. PubMed ID: 6255423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of the Escherichia coli gene for the stringent starvation protein.
    Fukuda R; Yano R; Fukui T; Hase T; Ishihama A; Matsubara H
    Mol Gen Genet; 1985; 201(2):151-7. PubMed ID: 3003520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proximal promoter element required for positive transcriptional control by guanosine tetraphosphate and DksA protein during the stringent response.
    Gummesson B; Lovmar M; Nyström T
    J Biol Chem; 2013 Jul; 288(29):21055-21064. PubMed ID: 23749992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pausing and attenuation of in vitro transcription in the rrnB operon of E. coli.
    Kingston RE; Chamberlin MJ
    Cell; 1981 Dec; 27(3 Pt 2):523-31. PubMed ID: 6086107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the Escherichia coli lytB gene, which is involved in penicillin tolerance and control of the stringent response.
    Gustafson CE; Kaul S; Ishiguro EE
    J Bacteriol; 1993 Feb; 175(4):1203-5. PubMed ID: 8432714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive control of expression of the argECBH gene cluster in vitro by guanosine 5'-diphosphate 3'-diphosphate.
    Zidwick MJ; Korshus J; Rogers P
    J Bacteriol; 1984 Aug; 159(2):647-51. PubMed ID: 6378886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.