These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29909308)

  • 1. The multilevel antibiotic-induced perturbations to biological systems: Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies.
    Renault D; Yousef H; Mohamed AA
    Environ Pollut; 2018 Oct; 241():821-833. PubMed ID: 29909308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of bioresmethrin on mitochondrial ultrastructure and oxidative phosphorylation in the flight muscles of Chrysomya albiceps (Wied.) (Diptera: Calliphoridae).
    Yousef HA; Shaurub el-SH
    J Egypt Soc Parasitol; 1998 Dec; 28(3):645-54. PubMed ID: 9914687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of chloramphenicol, ethidium bromide and cycloheximide on mortality and mitochondrial protein synthesis of adult blowflies.
    Ashour B; Tribe M; Whittaker P
    J Cell Sci; 1980 Feb; 41():273-89. PubMed ID: 7364884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell structure and the metabolism of insect flight muscle.
    SACKTOR B
    J Biophys Biochem Cytol; 1955 Jan; 1(1):29-46. PubMed ID: 14381426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical adaptations for flight in the insect.
    Sacktor B
    Biochem Soc Symp; 1976; (41):111-31. PubMed ID: 788715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondria in the flight muscles of insects. III. Mitochondrial cytochrome c in relation to the aging and wing beat frequency of flies.
    LEVENBOOK L; WILLIAMS CM
    J Gen Physiol; 1956 Mar; 39(4):497-512. PubMed ID: 13295550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging changes in insect flight muscle.
    Sohal RS
    Gerontology; 1976; 22(4):317-33. PubMed ID: 1269937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria in the flight muscles of insects. II. Effects of the medium on the size form, and organization of isolated sarcosomes.
    WATANABE MI; WILLIAMS CM
    J Gen Physiol; 1953 Sep; 37(1):71-90. PubMed ID: 13084893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective PPARdelta agonist treatment increases skeletal muscle lipid metabolism without altering mitochondrial energy coupling: an in vivo magnetic resonance spectroscopy study.
    Jucker BM; Yang D; Casey WM; Olzinski AR; Williams C; Lenhard SC; Legos JJ; Hawk CT; Sarkar SK; Newsholme SJ
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1256-64. PubMed ID: 17726146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of temperature on oxidative phosphorylation with insect flight muscle mitochondria.
    SACKTOR B; SANBORN R
    J Biophys Biochem Cytol; 1956 Jan; 2(1):105-7. PubMed ID: 13295315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate oxidation and the permeability of mitochondria from blowfly flight muscle.
    Childress CC; Sacktor B
    Science; 1966 Oct; 154(3746):268-70. PubMed ID: 5914759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial changes in flight muscles of normal and flightless Drosophila melanogaster with age.
    Sohal RD
    J Morphol; 1975 Mar; 145(3):337-53. PubMed ID: 804040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and ultrastructural studies on flight muscle mitochondria from the blowfly Calliphora erythrocephala following treatment by chloramphenicol and ethidium bromide.
    Ashour B; Tribe M; Danks S; Whittaker P
    J Cell Sci; 1980 Feb; 41():291-306. PubMed ID: 7364885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the response of mitochondrial calcium transport to exogenous phosphate during development in flight muscle of the sheep blowfly Lucilla cuprina.
    Smith RL; Bygrave FL
    Biochem J; 1978 Jan; 170(1):81-5. PubMed ID: 629784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The respiratory metabolism of insect flight muscle. I. Manometric studies of oxidation and concomitant phosphorylation with sarcosomes.
    SACKTOR B; COCHRAN DG
    Arch Biochem Biophys; 1958 Mar; 74(1):266-76. PubMed ID: 13522243
    [No Abstract]   [Full Text] [Related]  

  • 16. Mitochondrial physiology in the major arbovirus vector Aedes aegypti: substrate preferences and sexual differences define respiratory capacity and superoxide production.
    Soares JB; Gaviraghi A; Oliveira MF
    PLoS One; 2015; 10(3):e0120600. PubMed ID: 25803027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate use and temperature effects in flight muscle mitochondria from an endothermic insect, the hawkmoth Manduca sexta.
    Wilmsen SM; Dzialowski E
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jul; 281():111439. PubMed ID: 37119960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dihydroxyacetone phosphate, the product of alpha-glycerophosphate oxidation by insect flight muscle mitochondria.
    SACKTOR B; COCHRAN DG
    Biochim Biophys Acta; 1957 Oct; 26(1):200-1. PubMed ID: 13479479
    [No Abstract]   [Full Text] [Related]  

  • 19. The mitochondria of insect flight muscle.
    LEVENBOOK L
    J Histochem Cytochem; 1953 Jul; 1(4):242-7. PubMed ID: 13069689
    [No Abstract]   [Full Text] [Related]  

  • 20. Insect flight muscle: maturation and senescence.
    Baker GT
    Gerontology; 1976; 22(4):334-61. PubMed ID: 1269938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.