These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29909473)

  • 21. High redox potential laccases from the ligninolytic fungi Pycnoporus coccineus and Pycnoporus sanguineus suitable for white biotechnology: from gene cloning to enzyme characterization and applications.
    Uzan E; Nousiainen P; Balland V; Sipila J; Piumi F; Navarro D; Asther M; Record E; Lomascolo A
    J Appl Microbiol; 2010 Jun; 108(6):2199-213. PubMed ID: 19968731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppressor mutagenesis identifies a velvet complex remediator of Aspergillus nidulans secondary metabolism.
    Shaaban MI; Bok JW; Lauer C; Keller NP
    Eukaryot Cell; 2010 Dec; 9(12):1816-24. PubMed ID: 20935144
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laccase activity and putative laccase genes in marine-derived basidiomycetes.
    Bonugli-santos RC; Durrant LR; Sette LD
    Fungal Biol; 2010 Oct; 114(10):863-72. PubMed ID: 20943196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterologous expression of heterodimeric laccase from Pleurotus ostreatus in Kluyveromyces lactis.
    Faraco V; Ercole C; Festa G; Giardina P; Piscitelli A; Sannia G
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1329-35. PubMed ID: 18043917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns.
    Larrondo LF; Avila M; Salas L; Cullen D; Vicuña R
    Microbiology (Reading); 2003 May; 149(Pt 5):1177-1182. PubMed ID: 12724379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome sequence of the fungus Pycnoporus sanguineus, which produces cinnabarinic acid and pH- and thermo- stable laccases.
    Lin W; Jia G; Sun H; Sun T; Hou D
    Gene; 2020 Jun; 742():144586. PubMed ID: 32179171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of the cutinases expressed by Aspergillus nidulans and evaluation of their role in cutin degradation.
    Bermúdez-García E; Peña-Montes C; Martins I; Pais J; Pereira CS; Sánchez S; Farrés A
    Appl Microbiol Biotechnol; 2019 May; 103(9):3863-3874. PubMed ID: 30863878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR.
    D'Souza TM; Boominathan K; Reddy CA
    Appl Environ Microbiol; 1996 Oct; 62(10):3739-44. PubMed ID: 8837429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on the bZIP-Type Transcription Factors NapA and RsmA in the Regulation of Intracellular Reactive Species Levels and Sterigmatocystin Production of
    Bákány B; Yin WB; Dienes B; Nagy T; Leiter É; Emri T; Keller NP; Pócsi I
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel basic-region helix-loop-helix transcription factor (AnBH1) of Aspergillus nidulans counteracts the CCAAT-binding complex AnCF in the promoter of a penicillin biosynthesis gene.
    Caruso ML; Litzka O; Martic G; Lottspeich F; Brakhage AA
    J Mol Biol; 2002 Oct; 323(3):425-39. PubMed ID: 12381299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterologous Expression of Fungal Secondary Metabolite Pathways in the Aspergillus nidulans Host System.
    van Dijk JW; Wang CC
    Methods Enzymol; 2016; 575():127-42. PubMed ID: 27417927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study on the glutathione metabolism of the filamentous fungus Aspergillus nidulans.
    Bakti F; Király A; Orosz E; Miskei M; Emri T; Leiter É; Pócsi I
    Acta Microbiol Immunol Hung; 2017 Sep; 64(3):255-272. PubMed ID: 28263103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of gpd box copy numbers in the gpdA promoter of Aspergillus nidulans on its transcription efficiency in Aspergillus niger.
    Zhang H; Yan JN; Zhang H; Liu TQ; Xu Y; Zhang YY; Li J
    FEMS Microbiol Lett; 2018 Aug; 365(15):. PubMed ID: 29945234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of genes encoding cellulolytic enzymes by Pal-PacC signaling in Aspergillus nidulans.
    Kunitake E; Hagiwara D; Miyamoto K; Kanamaru K; Kimura M; Kobayashi T
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3621-35. PubMed ID: 26946171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the promoter of the nitrate transporter-encoding gene nrtA in Aspergillus nidulans.
    Liu Y; Li H; Li J; Zhou Y; Zhou Z; Wang P; Zhou S
    Mol Genet Genomics; 2020 Sep; 295(5):1269-1279. PubMed ID: 32561986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans.
    Tamayo EN; Villanueva A; Hasper AA; de Graaff LH; Ramón D; Orejas M
    Fungal Genet Biol; 2008 Jun; 45(6):984-93. PubMed ID: 18420433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterologous production of a laccase from the basidiomycete Pycnoporus cinnabarinus in the dimorphic yeast Yarrowia lipolytica.
    Madzak C; Otterbein L; Chamkha M; Moukha S; Asther M; Gaillardin C; Beckerich JM
    FEMS Yeast Res; 2005 Apr; 5(6-7):635-46. PubMed ID: 15780663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural and recombinant fungal laccases for paper pulp bleaching.
    Sigoillot C; Record E; Belle V; Robert JL; Levasseur A; Punt PJ; van den Hondel CA; Fournel A; Sigoillot JC; Asther M
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):346-52. PubMed ID: 14600793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway.
    Hicks JK; Yu JH; Keller NP; Adams TH
    EMBO J; 1997 Aug; 16(16):4916-23. PubMed ID: 9305634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved biomass saccharification by Trichoderma reesei through heterologous expression of lacA gene from Trametes sp. AH28-2.
    Zhang J; Qu Y; Xiao P; Wang X; Wang T; He F
    J Biosci Bioeng; 2012 Jun; 113(6):697-703. PubMed ID: 22387233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.