These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 2990983)

  • 1. The cholinergic innervation of the visual thalamus: an EM immunocytochemical study.
    de Lima AD; Montero VM; Singer W
    Exp Brain Res; 1985; 59(1):206-12. PubMed ID: 2990983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The organization of cholinergic projections in the visual thalamus of the mouse.
    Sokhadze G; Whyland KL; Bickford ME; Guido W
    J Comp Neurol; 2022 May; 530(7):1081-1098. PubMed ID: 34448209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of reciprocal connections between the dorsal lateral geniculate nucleus and the thalamic reticular nucleus.
    Campbell PW; Govindaiah G; Guido W
    Neural Dev; 2024 Jun; 19(1):6. PubMed ID: 38890758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurons in the thalamic reticular nucleus are selective for diverse and complex visual features.
    Vaingankar V; Soto-Sanchez C; Wang X; Sommer FT; Hirsch JA
    Front Integr Neurosci; 2012; 6():118. PubMed ID: 23269915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient expression of heavy-chain neurofilaments in the perigeniculate nucleus of cats.
    Merkulyeva N; Mikhalkin A
    Brain Struct Funct; 2024 Mar; 229(2):489-495. PubMed ID: 38265459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-wide functional connectivity of face patch neurons during rest.
    Zaldivar D; Koyano KW; Ye FQ; Godlove DC; Park SH; Russ BE; Bhik-Ghanie R; Leopold DA
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2206559119. PubMed ID: 36044550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current ideas about the roles of rapid eye movement and non-rapid eye movement sleep in brain development.
    Knoop MS; de Groot ER; Dudink J
    Acta Paediatr; 2021 Jan; 110(1):36-44. PubMed ID: 32673435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of dual-source cholinergic modulation in early vision.
    Krueger J; Disney AA
    J Comp Neurol; 2019 Feb; 527(3):738-750. PubMed ID: 30520037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex.
    Monavarfeshani A; Sabbagh U; Fox MA
    Vis Neurosci; 2017 Jan; 34():E012. PubMed ID: 28965517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus.
    Hammer S; Carrillo GL; Govindaiah G; Monavarfeshani A; Bircher JS; Su J; Guido W; Fox MA
    Neural Dev; 2014 Jul; 9():16. PubMed ID: 25011644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular dynamics of cholinergically induced alpha (8-13 Hz) rhythms in sensory thalamic nuclei in vitro.
    Lörincz ML; Crunelli V; Hughes SW
    J Neurosci; 2008 Jan; 28(3):660-71. PubMed ID: 18199766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural localization suggests that retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus.
    Godwin DW; Van Horn SC; Eriir A; Sesma M; Romano C; Sherman SM
    J Neurosci; 1996 Dec; 16(24):8181-92. PubMed ID: 8987843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic projections to the anterior thalamic nuclei in the rat: a combined retrograde tracing and choline acetyl transferase immunohistochemical study.
    Gonzalo-Ruiz A; Sanz-Anquela MJ; Lieberman AR
    Anat Embryol (Berl); 1995 Oct; 192(4):335-49. PubMed ID: 8554167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of acetylcholine on the visual response of lagged cells in the cat dorsal lateral geniculate nucleus.
    Hartveit E; Heggelund P
    Exp Brain Res; 1993; 95(3):443-9. PubMed ID: 8224070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cl- - and K+-dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate nucleus.
    Crunelli V; Haby M; Jassik-Gerschenfeld D; Leresche N; Pirchio M
    J Physiol; 1988 May; 399():153-76. PubMed ID: 3404460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light and electron microscopical immunocytochemistry of 5'-nucleotidase in rat cerebellum.
    Schoen SW; Graeber MB; Reddington M; Kreutzberg GW
    Histochemistry; 1987; 87(2):107-13. PubMed ID: 3040642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus.
    Sherman SM; Koch C
    Exp Brain Res; 1986; 63(1):1-20. PubMed ID: 3015651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural identification of somata and neural processes immunoreactive to antibodies against glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the cat.
    Montero VM; Singer W
    Exp Brain Res; 1985; 59(1):151-65. PubMed ID: 2990981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat.
    Smith Y; Paré D; Deschênes M; Parent A; Steriade M
    Exp Brain Res; 1988; 70(1):166-80. PubMed ID: 2841149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Actions of acetylcholine in the guinea-pig and cat medial and lateral geniculate nuclei, in vitro.
    McCormick DA; Prince DA
    J Physiol; 1987 Nov; 392():147-65. PubMed ID: 2833597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.