These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29909833)

  • 1. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria.
    Ulrich EC; Kamat SS; Hove-Jensen B; Zechel DL
    Methods Enzymol; 2018; 605():351-426. PubMed ID: 29909833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean.
    Metcalf WW; Griffin BM; Cicchillo RM; Gao J; Janga SC; Cooke HA; Circello BT; Evans BS; Martens-Habbena W; Stahl DA; van der Donk WA
    Science; 2012 Aug; 337(6098):1104-7. PubMed ID: 22936780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Oxidative Pathway for Microbial Utilization of Methylphosphonic Acid as a Phosphate Source.
    Gama SR; Vogt M; Kalina T; Hupp K; Hammerschmidt F; Pallitsch K; Zechel DL
    ACS Chem Biol; 2019 Apr; 14(4):735-741. PubMed ID: 30810303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria.
    Carini P; White AE; Campbell EO; Giovannoni SJ
    Nat Commun; 2014 Jul; 5():4346. PubMed ID: 25000228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation.
    Sosa OA; Repeta DJ; DeLong EF; Ashkezari MD; Karl DM
    Environ Microbiol; 2019 Jul; 21(7):2402-2414. PubMed ID: 30972938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of the phosphate regulon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12.
    Wackett LP; Wanner BL; Venditti CP; Walsh CT
    J Bacteriol; 1987 Apr; 169(4):1753-6. PubMed ID: 3549702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.
    Hove-Jensen B; Zechel DL; Jochimsen B
    Microbiol Mol Biol Rev; 2014 Mar; 78(1):176-97. PubMed ID: 24600043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic mechanism for aerobic formation of methane by bacteria.
    Kamat SS; Williams HJ; Dangott LJ; Chakrabarti M; Raushel FM
    Nature; 2013 May; 497(7447):132-6. PubMed ID: 23615610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur metabolites in the pelagic ocean.
    Moran MA; Durham BP
    Nat Rev Microbiol; 2019 Nov; 17(11):665-678. PubMed ID: 31485034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for methylphosphonate biosynthesis.
    Born DA; Ulrich EC; Ju KS; Peck SC; van der Donk WA; Drennan CL
    Science; 2017 Dec; 358(6368):1336-1339. PubMed ID: 29217579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-driven ion-translocating rhodopsins in marine bacteria.
    Inoue K; Kato Y; Kandori H
    Trends Microbiol; 2015 Feb; 23(2):91-8. PubMed ID: 25432080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate oxygen isotope evidence for methylphosphonate sources of methane and dissolved inorganic phosphate.
    Yu C; Wang F; Chang SJ; Yao J; Blake RE
    Sci Total Environ; 2018 Dec; 644():747-753. PubMed ID: 29990922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphonate production by marine microbes: Exploring new sources and potential function.
    Acker M; Hogle SL; Berube PM; Hackl T; Coe A; Stepanauskas R; Chisholm SW; Repeta DJ
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2113386119. PubMed ID: 35254902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean.
    Boeuf D; Edwards BR; Eppley JM; Hu SK; Poff KE; Romano AE; Caron DA; Karl DM; DeLong EF
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11824-11832. PubMed ID: 31127042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylphosphonate Oxidation in
    Sosa OA; Casey JR; Karl DM
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31028025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global and seasonal variation of marine phosphonate metabolism.
    Lockwood S; Greening C; Baltar F; Morales SE
    ISME J; 2022 Sep; 16(9):2198-2212. PubMed ID: 35739297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate insensitive aminophosphonate mineralisation within oceanic nutrient cycles.
    Chin JP; Quinn JP; McGrath JW
    ISME J; 2018 Apr; 12(4):973-980. PubMed ID: 29339823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strains of the toxic and bloom-forming Nodularia spumigena (cyanobacteria) can degrade methylphosphonate and release methane.
    Teikari JE; Fewer DP; Shrestha R; Hou S; Leikoski N; Mäkelä M; Simojoki A; Hess WR; Sivonen K
    ISME J; 2018 Jun; 12(6):1619-1630. PubMed ID: 29445131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction.
    Morris RM; Nunn BL; Frazar C; Goodlett DR; Ting YS; Rocap G
    ISME J; 2010 May; 4(5):673-85. PubMed ID: 20164862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.