These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 2990994)

  • 1. Energy metabolism and transduction in smooth muscle.
    Lynch RM; Paul RJ
    Experientia; 1985 Aug; 41(8):970-7. PubMed ID: 2990994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentation of carbohydrate metabolism in vascular smooth muscle.
    Lynch RM; Paul RJ
    Am J Physiol; 1987 Mar; 252(3 Pt 1):C328-34. PubMed ID: 3030131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular smooth muscle energetics.
    Paul RJ; Krisanda JM; Lynch RM
    J Cardiovasc Pharmacol; 1984; 6 Suppl 2():S320-7. PubMed ID: 6206340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compartmentation of glycolytic and glycogenolytic metabolism in vascular smooth muscle.
    Lynch RM; Paul RJ
    Science; 1983 Dec; 222(4630):1344-6. PubMed ID: 6658455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose uptake in porcine carotid artery: relation to alterations in active Na+-K+ transport.
    Lynch RM; Paul RJ
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C433-40. PubMed ID: 6093572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy metabolism of reticulocytes: two different sources of energy for Na+K(+)-ATPase activity.
    Kostić MM; Zivković RV
    Cell Biochem Funct; 1994 Jun; 12(2):107-12. PubMed ID: 8044886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin.
    James JH; Wagner KR; King JK; Leffler RE; Upputuri RK; Balasubramaniam A; Friend LA; Shelly DA; Paul RJ; Fischer JE
    Am J Physiol; 1999 Jul; 277(1):E176-86. PubMed ID: 10409142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes.
    Paul RJ; Bauer M; Pease W
    Science; 1979 Dec; 206(4425):1414-6. PubMed ID: 505014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+/K(+)-ATPase activity in vascular smooth muscle from streptozotocin diabetic rat.
    Smith JM; Paulson DJ; Solar SM
    Cardiovasc Res; 1997 Apr; 34(1):137-44. PubMed ID: 9217883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of fuel provision for the Na+,K(+)-ATPase in porcine vascular smooth muscle.
    Campbell JD; Paul RJ
    J Physiol; 1992 Feb; 447():67-82. PubMed ID: 1317437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-dependent alteration in O2 consumption and energy metabolism in vascular smooth muscle.
    Barron JT; Kopp SJ; Tow J; Parrillo JE
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H1869-77. PubMed ID: 8764234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The aerobic metabolism of porcine carotid artery and its relationship to isometric force. Energy cost of isometric contraction.
    Glück E; Paul RJ
    Pflugers Arch; 1977 Jul; 370(1):9-18. PubMed ID: 142965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes.
    Erecińska M; Dagani F
    J Gen Physiol; 1990 Apr; 95(4):591-616. PubMed ID: 2159972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy metabolism of renal cell lines, A6 and MDCK: regulation by Na-K-ATPase.
    Lynch RM; Balaban RS
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C225-31. PubMed ID: 3030121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADH/NAD redox state of cytoplasmic glycolytic compartments in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2872-8. PubMed ID: 11087243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of isoproterenol and ouabain on oxygen consumption, lactate production, and the activation of phosphorylase in coronary artery smooth muscle.
    Paul RJ
    Circ Res; 1983 Jun; 52(6):683-90. PubMed ID: 6861286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycogen metabolism during tension generation and maintenance in vascular smooth muscle.
    Lynch RM; Kuettner CP; Paul RJ
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C736-42. PubMed ID: 2801923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of ion channels and transporters by glycolytically derived ATP.
    Dhar-Chowdhury P; Malester B; Rajacic P; Coetzee WA
    Cell Mol Life Sci; 2007 Dec; 64(23):3069-83. PubMed ID: 17882378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.