These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29909997)

  • 21. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
    Alemi A; Baldassi C; Brunel N; Zecchina R
    PLoS Comput Biol; 2015 Aug; 11(8):e1004439. PubMed ID: 26291608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capacity-enhancing synaptic learning rules in a medial temporal lobe online learning model.
    Wu XE; Mel BW
    Neuron; 2009 Apr; 62(1):31-41. PubMed ID: 19376065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling memory: what do we learn from attractor neural networks?
    Brunel N; Nadal JP
    C R Acad Sci III; 1998; 321(2-3):249-52. PubMed ID: 9759349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model of the interaction between mood and memory.
    Rolls ET; Stringer SM
    Network; 2001 May; 12(2):89-109. PubMed ID: 11405424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coexistence of memory patterns and mixed states in a sparsely encoded associative memory model storing ultrametric patterns.
    Kimoto T; Okada M
    Biol Cybern; 2004 Apr; 90(4):229-38. PubMed ID: 15085342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General differential Hebbian learning: Capturing temporal relations between events in neural networks and the brain.
    Zappacosta S; Mannella F; Mirolli M; Baldassarre G
    PLoS Comput Biol; 2018 Aug; 14(8):e1006227. PubMed ID: 30153263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.
    Tully PJ; Lindén H; Hennig MH; Lansner A
    PLoS Comput Biol; 2016 May; 12(5):e1004954. PubMed ID: 27213810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From synapse to network: models of information storage and retrieval in neural circuits.
    Aljadeff J; Gillett M; Pereira Obilinovic U; Brunel N
    Curr Opin Neurobiol; 2021 Oct; 70():24-33. PubMed ID: 34175521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic plasticity and memory: an evaluation of the hypothesis.
    Martin SJ; Grimwood PD; Morris RG
    Annu Rev Neurosci; 2000; 23():649-711. PubMed ID: 10845078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards understanding of the cortical network underlying associative memory.
    Osada T; Adachi Y; Kimura HM; Miyashita Y
    Philos Trans R Soc Lond B Biol Sci; 2008 Jun; 363(1500):2187-99. PubMed ID: 18339600
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.
    Panda P; Roy K
    Front Neurosci; 2017; 11():693. PubMed ID: 29311774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust Associative Learning Is Sufficient to Explain the Structural and Dynamical Properties of Local Cortical Circuits.
    Zhang D; Zhang C; Stepanyants A
    J Neurosci; 2019 Aug; 39(35):6888-6904. PubMed ID: 31270161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal mechanisms encoding global-to-fine information in inferior-temporal cortex.
    Matsumoto N; Okada M; Sugase-Miyamoto Y; Yamane S
    J Comput Neurosci; 2005; 18(1):85-103. PubMed ID: 15789171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homeostatic control of synaptic rewiring in recurrent networks induces the formation of stable memory engrams.
    Gallinaro JV; Gašparović N; Rotter S
    PLoS Comput Biol; 2022 Feb; 18(2):e1009836. PubMed ID: 35143489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A spiking network model of short-term active memory.
    Zipser D; Kehoe B; Littlewort G; Fuster J
    J Neurosci; 1993 Aug; 13(8):3406-20. PubMed ID: 8340815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS.
    Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C
    Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hot coffee: associative memory with bump attractor cell assemblies of spiking neurons.
    Huyck CR; Vergani AA
    J Comput Neurosci; 2020 Aug; 48(3):299-316. PubMed ID: 32715350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compositional memory in attractor neural networks with one-step learning.
    Davis GP; Katz GE; Gentili RJ; Reggia JA
    Neural Netw; 2021 Jun; 138():78-97. PubMed ID: 33631609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.