These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 29910073)

  • 1. Activity-Dependent Actin Remodeling at the Base of Dendritic Spines Promotes Microtubule Entry.
    Schätzle P; Esteves da Silva M; Tas RP; Katrukha EA; Hu HY; Wierenga CJ; Kapitein LC; Hoogenraad CC
    Curr Biol; 2018 Jul; 28(13):2081-2093.e6. PubMed ID: 29910073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin.
    Merriam EB; Millette M; Lumbard DC; Saengsawang W; Fothergill T; Hu X; Ferhat L; Dent EW
    J Neurosci; 2013 Oct; 33(42):16471-82. PubMed ID: 24133252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamic cytoskeleton: backbone of dendritic spine plasticity.
    Dent EW; Merriam EB; Hu X
    Curr Opin Neurobiol; 2011 Feb; 21(1):175-81. PubMed ID: 20832290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMDA receptor activation suppresses microtubule growth and spine entry.
    Kapitein LC; Yau KW; Gouveia SM; van der Zwan WA; Wulf PS; Keijzer N; Demmers J; Jaworski J; Akhmanova A; Hoogenraad CC
    J Neurosci; 2011 Jun; 31(22):8194-209. PubMed ID: 21632941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity.
    Jaworski J; Kapitein LC; Gouveia SM; Dortland BR; Wulf PS; Grigoriev I; Camera P; Spangler SA; Di Stefano P; Demmers J; Krugers H; Defilippi P; Akhmanova A; Hoogenraad CC
    Neuron; 2009 Jan; 61(1):85-100. PubMed ID: 19146815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-dependent dynamic microtubule invasion of dendritic spines.
    Hu X; Viesselmann C; Nam S; Merriam E; Dent EW
    J Neurosci; 2008 Dec; 28(49):13094-105. PubMed ID: 19052200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not just actin? A role for dynamic microtubules in dendritic spines.
    Penzes P; Srivastava DP; Woolfrey KM
    Neuron; 2009 Jan; 61(1):3-5. PubMed ID: 19146807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid beta: a putative intra-spinal microtubule-depolymerizer to induce synapse-loss or dentritic spine shortening in Alzheimer's disease.
    Mitsuyama F; Futatsugi Y; Okuya M; Karagiozov K; Peev N; Kato Y; Kanno T; Sano H; Koide T
    Ital J Anat Embryol; 2009; 114(2-3):109-20. PubMed ID: 20198823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule dynamics in dendritic spines.
    Kapitein LC; Yau KW; Hoogenraad CC
    Methods Cell Biol; 2010; 97():111-32. PubMed ID: 20719268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer's disease.
    Gordon-Weeks PR
    Brain Res Bull; 2016 Sep; 126(Pt 3):293-299. PubMed ID: 27365229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A methodology for specific disruption of microtubule polymerization into dendritic spines.
    Holland ED; Miller HL; Millette MM; Taylor RJ; Drucker GL; Dent EW
    Mol Biol Cell; 2024 Jun; 35(6):mr3. PubMed ID: 38630519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin filaments and microtubules in dendritic spines.
    Shirao T; González-Billault C
    J Neurochem; 2013 Jul; 126(2):155-64. PubMed ID: 23692384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abl2:Cortactin Interactions Regulate Dendritic Spine Stability via Control of a Stable Filamentous Actin Pool.
    Shaw JE; Kilander MBC; Lin YC; Koleske AJ
    J Neurosci; 2021 Apr; 41(14):3068-3081. PubMed ID: 33622779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortactin-binding protein 2 increases microtubule stability and regulates dendritic arborization.
    Shih PY; Lee SP; Chen YK; Hsueh YP
    J Cell Sci; 2014 Aug; 127(Pt 16):3521-34. PubMed ID: 24928895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms.
    Okabe S
    Mol Cell Neurosci; 2020 Dec; 109():103564. PubMed ID: 33096206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maintenance of dendritic spine morphology by partitioning-defective 1b through regulation of microtubule growth.
    Hayashi K; Suzuki A; Hirai S; Kurihara Y; Hoogenraad CC; Ohno S
    J Neurosci; 2011 Aug; 31(34):12094-103. PubMed ID: 21865452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-triggered exit of F-actin and IP(3) 3-kinase A from dendritic spines is rapid and reversible.
    Schell MJ; Irvine RF
    Eur J Neurosci; 2006 Nov; 24(9):2491-503. PubMed ID: 17100838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic F-actin structures shape the neck of dendritic spines.
    Bär J; Kobler O; van Bommel B; Mikhaylova M
    Sci Rep; 2016 Nov; 6():37136. PubMed ID: 27841352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology.
    Fujii R; Okabe S; Urushido T; Inoue K; Yoshimura A; Tachibana T; Nishikawa T; Hicks GG; Takumi T
    Curr Biol; 2005 Mar; 15(6):587-93. PubMed ID: 15797031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting.
    Evans JC; Robinson CM; Shi M; Webb DJ
    J Biol Chem; 2015 Apr; 290(16):10295-308. PubMed ID: 25750125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.