BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29910721)

  • 1. Better Diffusion Segmentation in Acute Ischemic Stroke Through Automatic Tree Learning Anomaly Segmentation.
    Boldsen JK; Engedal TS; Pedraza S; Cho TH; Thomalla G; Nighoghossian N; Baron JC; Fiehler J; Østergaard L; Mouridsen K
    Front Neuroinform; 2018; 12():21. PubMed ID: 29910721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning identifies stroke features between species.
    Castaneda-Vega S; Katiyar P; Russo F; Patzwaldt K; Schnabel L; Mathes S; Hempel JM; Kohlhofer U; Gonzalez-Menendez I; Quintanilla-Martinez L; Ziemann U; la Fougere C; Ernemann U; Pichler BJ; Disselhorst JA; Poli S
    Theranostics; 2021; 11(6):3017-3034. PubMed ID: 33456586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated acute ischemic stroke lesion delineation based on apparent diffusion coefficient thresholds.
    Gosch V; Villringer K; Galinovic I; Ganeshan R; Piper SK; Fiebach JB; Khalil A
    Front Neurol; 2023; 14():1203241. PubMed ID: 37576010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI.
    Nazari-Farsani S; Nyman M; Karjalainen T; Bucci M; Isojärvi J; Nummenmaa L
    J Neurosci Methods; 2020 Mar; 333():108575. PubMed ID: 31904391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated estimation of salvageable tissue: Comparison with expert readers.
    Hansen MB; Nagenthiraja K; Ribe LR; Dupont KH; Østergaard L; Mouridsen K
    J Magn Reson Imaging; 2016 Jan; 43(1):220-8. PubMed ID: 26036930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Big Data Approaches to Phenotyping Acute Ischemic Stroke Using Automated Lesion Segmentation of Multi-Center Magnetic Resonance Imaging Data.
    Wu O; Winzeck S; Giese AK; Hancock BL; Etherton MR; Bouts MJRJ; Donahue K; Schirmer MD; Irie RE; Mocking SJT; McIntosh EC; Bezerra R; Kamnitsas K; Frid P; Wasselius J; Cole JW; Xu H; Holmegaard L; Jiménez-Conde J; Lemmens R; Lorentzen E; McArdle PF; Meschia JF; Roquer J; Rundek T; Sacco RL; Schmidt R; Sharma P; Slowik A; Stanne TM; Thijs V; Vagal A; Woo D; Bevan S; Kittner SJ; Mitchell BD; Rosand J; Worrall BB; Jern C; Lindgren AG; Maguire J; Rost NS
    Stroke; 2019 Jul; 50(7):1734-1741. PubMed ID: 31177973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using Encoder-Decoder Convolutional Network.
    Kim YC; Lee JE; Yu I; Song HN; Baek IY; Seong JK; Jeong HG; Kim BJ; Nam HS; Chung JW; Bang OY; Kim GM; Seo WK
    Stroke; 2019 Jun; 50(6):1444-1451. PubMed ID: 31092169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of tumor burden in multiple myeloma by atlas-based semi-automatic segmentation of WB-DWI.
    Almeida SD; Santinha J; Oliveira FPM; Ip J; Lisitskaya M; Lourenço J; Uysal A; Matos C; João C; Papanikolaou N
    Cancer Imaging; 2020 Jan; 20(1):6. PubMed ID: 31931880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome.
    Wong KK; Cummock JS; Li G; Ghosh R; Xu P; Volpi JJ; Wong STC
    Stroke; 2022 Sep; 53(9):2896-2905. PubMed ID: 35545938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms.
    Woo I; Lee A; Jung SC; Lee H; Kim N; Cho SJ; Kim D; Lee J; Sunwoo L; Kang DW
    Korean J Radiol; 2019 Aug; 20(8):1275-1284. PubMed ID: 31339015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans.
    Griffis JC; Allendorfer JB; Szaflarski JP
    J Neurosci Methods; 2016 Jan; 257():97-108. PubMed ID: 26432931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lesion segmentation from multimodal MRI using random forest following ischemic stroke.
    Mitra J; Bourgeat P; Fripp J; Ghose S; Rose S; Salvado O; Connelly A; Campbell B; Palmer S; Sharma G; Christensen S; Carey L
    Neuroimage; 2014 Sep; 98():324-35. PubMed ID: 24793830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semantic segmentation guided detector for segmentation, classification, and lesion mapping of acute ischemic stroke in MRI images.
    Wei YC; Huang WY; Jian CY; Hsu CH; Hsu CC; Lin CP; Cheng CT; Chen YL; Wei HY; Chen KF
    Neuroimage Clin; 2022; 35():103044. PubMed ID: 35597030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT.
    Qiu W; Kuang H; Teleg E; Ospel JM; Sohn SI; Almekhlafi M; Goyal M; Hill MD; Demchuk AM; Menon BK
    Radiology; 2020 Mar; 294(3):638-644. PubMed ID: 31990267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Ensemble of Two Different Multimodal Approaches to Segment 3D Ischemic Stroke Segmentation Using Brain Tumor Representation Among Multiple Center Datasets.
    Jeong H; Lim H; Yoon C; Won J; Lee GY; de la Rosa E; Kirschke JS; Kim B; Kim N; Kim C
    J Imaging Inform Med; 2024 May; ():. PubMed ID: 38693333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-automatic tumor segmentation of rectal cancer based on functional magnetic resonance imaging.
    Knuth F; Groendahl AR; Winter RM; Torheim T; Negård A; Holmedal SH; Bakke KM; Meltzer S; Futsæther CM; Redalen KR
    Phys Imaging Radiat Oncol; 2022 Apr; 22():77-84. PubMed ID: 35602548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.
    Le Troter A; Fouré A; Guye M; Confort-Gouny S; Mattei JP; Gondin J; Salort-Campana E; Bendahan D
    MAGMA; 2016 Apr; 29(2):245-57. PubMed ID: 26983429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute and sub-acute stroke lesion segmentation from multimodal MRI.
    Clèrigues A; Valverde S; Bernal J; Freixenet J; Oliver A; Lladó X
    Comput Methods Programs Biomed; 2020 Oct; 194():105521. PubMed ID: 32434099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs.
    Chen Y; Dhar R; Heitsch L; Ford A; Fernandez-Cadenas I; Carrera C; Montaner J; Lin W; Shen D; An H; Lee JM
    Neuroimage Clin; 2016; 12():673-680. PubMed ID: 27761398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute ischemic stroke lesion core segmentation in CT perfusion images using fully convolutional neural networks.
    Clèrigues A; Valverde S; Bernal J; Freixenet J; Oliver A; Lladó X
    Comput Biol Med; 2019 Dec; 115():103487. PubMed ID: 31629272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.