These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29910766)

  • 41. The internal representation of head orientation differs for conscious perception and balance control.
    Dalton BH; Rasman BG; Inglis JT; Blouin JS
    J Physiol; 2017 Apr; 595(8):2731-2749. PubMed ID: 28035656
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues.
    Assländer L; Peterka RJ
    J Neurophysiol; 2016 Aug; 116(2):272-85. PubMed ID: 27075544
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy.
    Iwasaki S; Fujimoto C; Egami N; Kinoshita M; Togo F; Yamamoto Y; Yamasoba T
    Brain Stimul; 2018; 11(4):709-715. PubMed ID: 29563049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for a Causal Contribution of Macaque Vestibular, But Not Intraparietal, Cortex to Heading Perception.
    Chen A; Gu Y; Liu S; DeAngelis GC; Angelaki DE
    J Neurosci; 2016 Mar; 36(13):3789-98. PubMed ID: 27030763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual body form and orientation cues do not modulate visuo-tactile temporal integration.
    Smit S; Rich AN; Zopf R
    PLoS One; 2019; 14(12):e0224174. PubMed ID: 31841510
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Idiothetic signal processing and spatial orientation in patients with unilateral hippocampal sclerosis.
    Anagnostou E; Skarlatou V; Mergner T; Anastasopoulos D
    J Neurophysiol; 2018 Sep; 120(3):1256-1263. PubMed ID: 29897863
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temporoparietal encoding of space and time during vestibular-guided orientation.
    Kaski D; Quadir S; Nigmatullina Y; Malhotra PA; Bronstein AM; Seemungal BM
    Brain; 2016 Feb; 139(Pt 2):392-403. PubMed ID: 26719385
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sensory integration for human balance control.
    Peterka RJ
    Handb Clin Neurol; 2018; 159():27-42. PubMed ID: 30482320
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception.
    Liu S; Angelaki DE
    J Neurosci; 2009 Jul; 29(28):8936-45. PubMed ID: 19605631
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Perceptual precision of passive body tilt is consistent with statistically optimal cue integration.
    Lim K; Karmali F; Nicoucar K; Merfeld DM
    J Neurophysiol; 2017 May; 117(5):2037-2052. PubMed ID: 28179477
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Noisy galvanic vestibular stimulation: an emerging treatment option for bilateral vestibulopathy.
    Wuehr M; Decker J; Schniepp R
    J Neurol; 2017 Oct; 264(Suppl 1):81-86. PubMed ID: 28391373
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Navigating sensory conflict in dynamic environments using adaptive state estimation.
    Klein TJ; Jeka J; Kiemel T; Lewis MA
    Biol Cybern; 2011 Dec; 105(5-6):291-304. PubMed ID: 22290136
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimized Signal Analysis to Quantify the Non-Linear Behaviour of the Electrically Evoked Vestibulo-Ocular Reflex in Patients with a Vestibular Implant.
    Starkov D; Pleshkov M; Guinand N; Pérez Fornos A; Ranieri M; Cavuscens S; Stultiens JJA; Devocht EMJ; Kingma H; van de Berg R
    Audiol Neurootol; 2022; 27(6):458-468. PubMed ID: 35817001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Auditory biofeedback substitutes for loss of sensory information in maintaining stance.
    Dozza M; Horak FB; Chiari L
    Exp Brain Res; 2007 Mar; 178(1):37-48. PubMed ID: 17021893
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Bárány Society.
    Strupp M; Kim JS; Murofushi T; Straumann D; Jen JC; Rosengren SM; Della Santina CC; Kingma H
    J Vestib Res; 2017; 27(4):177-189. PubMed ID: 29081426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship between vestibular sensitivity and multisensory temporal integration.
    Shayman CS; Seo JH; Oh Y; Lewis RF; Peterka RJ; Hullar TE
    J Neurophysiol; 2018 Oct; 120(4):1572-1577. PubMed ID: 30020839
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multisensory integration: resolving sensory ambiguities to build novel representations.
    Green AM; Angelaki DE
    Curr Opin Neurobiol; 2010 Jun; 20(3):353-60. PubMed ID: 20471245
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cognitive Rehabilitation in Bilateral Vestibular Patients: A Computational Perspective.
    Ellis AW; Schöne CG; Vibert D; Caversaccio MD; Mast FW
    Front Neurol; 2018; 9():286. PubMed ID: 29755404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input.
    Sprenger A; Wojak JF; Jandl NM; Helmchen C
    Front Neurol; 2017; 8():444. PubMed ID: 28919878
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A vestibular sensation: probabilistic approaches to spatial perception.
    Angelaki DE; Klier EM; Snyder LH
    Neuron; 2009 Nov; 64(4):448-61. PubMed ID: 19945388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.