These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29910785)

  • 61. Complete Genome Sequence of Vibrio natriegens Phage Phriendly.
    Clark J; Awah A; Moreland R; Liu M; Gill JJ; Ramsey J
    Microbiol Resour Announc; 2019 Oct; 8(40):. PubMed ID: 31582448
    [No Abstract]   [Full Text] [Related]  

  • 62. Multiplex Genome Editing by Natural Transformation (MuGENT) for Synthetic Biology in Vibrio natriegens.
    Dalia TN; Hayes CA; Stolyar S; Marx CJ; McKinlay JB; Dalia AB
    ACS Synth Biol; 2017 Sep; 6(9):1650-1655. PubMed ID: 28571309
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Exploiting the Feedstock Flexibility of the Emergent Synthetic Biology Chassis
    Ellis GA; Tschirhart T; Spangler J; Walper SA; Medintz IL; Vora GJ
    Mar Drugs; 2019 Nov; 17(12):. PubMed ID: 31801279
    [TBL] [Abstract][Full Text] [Related]  

  • 64. NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens.
    Stukenberg D; Hoff J; Faber A; Becker A
    Commun Biol; 2022 Mar; 5(1):265. PubMed ID: 35338236
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Efficient natural plasmid transformation of
    Specht DA; Sheppard TJ; Kennedy F; Li S; Gadikota G; Barstow B
    PNAS Nexus; 2024 Feb; 3(2):pgad444. PubMed ID: 38352175
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation and Characterization of a Novel Vibrio natriegens—Infecting Phage and Its Potential Therapeutic Application in Abalone Aquaculture.
    Li X; Liang Y; Wang Z; Yao Y; Chen X; Shao A; Lu L; Dang H
    Biology (Basel); 2022 Nov; 11(11):. PubMed ID: 36421384
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A combined cell-free transcription-translation system from Saccharomyces cerevisiae for rapid and robust protein synthe.
    Gan R; Jewett MC
    Biotechnol J; 2014 May; 9(5):641-51. PubMed ID: 24677809
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Establishing a Eukaryotic
    Zhang L; Liu WQ; Li J
    Front Bioeng Biotechnol; 2020; 8():536. PubMed ID: 32626695
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Global Metabolomics Reveals That
    Ouyang Y; Chen S; Zhao L; Song Y; Lei A; He J; Wang J
    Front Bioeng Biotechnol; 2021; 9():652021. PubMed ID: 33869160
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Establishing a high yielding streptomyces-based cell-free protein synthesis system.
    Li J; Wang H; Kwon YC; Jewett MC
    Biotechnol Bioeng; 2017 Jun; 114(6):1343-1353. PubMed ID: 28112394
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Discovery and remodeling of Vibrio natriegens as a microbial platform for efficient formic acid biorefinery.
    Tian J; Deng W; Zhang Z; Xu J; Yang G; Zhao G; Yang S; Jiang W; Gu Y
    Nat Commun; 2023 Nov; 14(1):7758. PubMed ID: 38012202
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Rapid, high-titer biosynthesis of melanin using the marine bacterium
    Smith AD; Tschirhart T; Compton J; Hennessa TM; VanArsdale E; Wang Z
    Front Bioeng Biotechnol; 2023; 11():1239756. PubMed ID: 37781538
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Establishment of a salt-induced bioremediation platform from marine Vibrio natriegens.
    Huang L; Ni J; Zhong C; Xu P; Dai J; Tang H
    Commun Biol; 2022 Dec; 5(1):1352. PubMed ID: 36494435
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Experimentally Validated Model Enables Debottlenecking of in Vitro Protein Synthesis and Identifies a Control Shift under in Vivo Conditions.
    Nieß A; Failmezger J; Kuschel M; Siemann-Herzberg M; Takors R
    ACS Synth Biol; 2017 Oct; 6(10):1913-1921. PubMed ID: 28627886
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cell-free protein synthesis from non-growing, stressed Escherichia coli.
    Failmezger J; Rauter M; Nitschel R; Kraml M; Siemann-Herzberg M
    Sci Rep; 2017 Nov; 7(1):16524. PubMed ID: 29184159
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantitative polysome analysis identifies limitations in bacterial cell-free protein synthesis.
    Underwood KA; Swartz JR; Puglisi JD
    Biotechnol Bioeng; 2005 Aug; 91(4):425-35. PubMed ID: 15991235
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Development of a
    Wang H; Li J; Jewett MC
    Synth Biol (Oxf); 2018; 3(1):ysy003. PubMed ID: 32995512
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Simplifying and streamlining Escherichia coli-based cell-free protein synthesis.
    Yang WC; Patel KG; Wong HE; Swartz JR
    Biotechnol Prog; 2012; 28(2):413-20. PubMed ID: 22275217
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Metabolic engineering of Vibrio natriegens for anaerobic succinate production.
    Thoma F; Schulze C; Gutierrez-Coto C; Hädrich M; Huber J; Gunkel C; Thoma R; Blombach B
    Microb Biotechnol; 2022 Jun; 15(6):1671-1684. PubMed ID: 34843164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.