BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29910872)

  • 1. How π back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes.
    Bistoni G; Rampino S; Scafuri N; Ciancaleoni G; Zuccaccia D; Belpassi L; Tarantelli F
    Chem Sci; 2016 Feb; 7(2):1174-1184. PubMed ID: 29910872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand Effect on Bonding in Gold(III) Carbonyl Complexes.
    Sorbelli D; Belpassi L; Tarantelli F; Belanzoni P
    Inorg Chem; 2018 May; 57(10):6161-6175. PubMed ID: 29741374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When the Tolman electronic parameter fails: a comparative DFT and charge displacement study of [(L)Ni(CO)₃](0/-) and [(L)Au(CO)](0/+).
    Ciancaleoni G; Scafuri N; Bistoni G; Macchioni A; Tarantelli F; Zuccaccia D; Belpassi L
    Inorg Chem; 2014 Sep; 53(18):9907-16. PubMed ID: 25166741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy analysis of metal-ligand bonding in transition metal complexes with terminal group-13 diyl ligands (CO)(4)Fe-ER, Fe(EMe)(5) and Ni(EMe)(4) (E = B-Tl; R = Cp, N(SiH(3))(2), Ph, Me) reveals significant pi bonding in homoleptical molecules.
    Uddin J; Frenking G
    J Am Chem Soc; 2001 Feb; 123(8):1683-93. PubMed ID: 11456768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and theoretical investigations of vibrational frequencies in binary unsaturated transition-metal carbonyl cations, neutrals, and anions.
    Zhou M; Andrews L; Bauschlicher CW
    Chem Rev; 2001 Jul; 101(7):1931-61. PubMed ID: 11710236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting coordination geometry to selectively predict the σ-donor and π-acceptor abilities of ligands: a back-and-forth journey between electronic properties and spectroscopy.
    Fusè M; Rimoldi I; Facchetti G; Rampino S; Barone V
    Chem Commun (Camb); 2018 Mar; 54(19):2397-2400. PubMed ID: 29457171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-on and side-on π-acid ligand adducts of gold(I): carbonyl, cyanide, isocyanide, and cyclooctyne gold(I) complexes supported by N-heterocyclic carbenes and phosphines.
    Celik MA; Dash C; Adiraju VA; Das A; Yousufuddin M; Frenking G; Dias HV
    Inorg Chem; 2013 Jan; 52(2):729-42. PubMed ID: 23273108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkyne Activation with Gold(III) Complexes: A Quantitative Assessment of the Ligand Effect by Charge-Displacement Analysis.
    Gregori L; Sorbelli D; Belpassi L; Tarantelli F; Belanzoni P
    Inorg Chem; 2019 Mar; 58(5):3115-3129. PubMed ID: 30775914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical analysis of bonding in N-heterocyclic carbene-rhodium complexes.
    Srebro M; Michalak A
    Inorg Chem; 2009 Jun; 48(12):5361-9. PubMed ID: 19400577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The strongest CO binding and the highest C-O stretching frequency.
    Saha R; Pan S; Frenking G; Chattaraj PK; Merino G
    Phys Chem Chem Phys; 2017 Jan; 19(3):2286-2293. PubMed ID: 28054679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-CO Bonding in Mononuclear Transition Metal Carbonyl Complexes.
    Frenking G; Fernández I; Holzmann N; Pan S; Krossing I; Zhou M
    JACS Au; 2021 May; 1(5):623-645. PubMed ID: 34467324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bonding Properties of the 1,2-Semiquinone Radical-Anionic Ligand in the [M(CO)(4-n)(L)(n)(DBSQ)] Complexes (M = Re, Mn; DBSQ = 3,5-di-tert-butyl-1,2-benzosemiquinone; n = 0, 1, 2). A Comprehensive Spectroscopic (UV-Vis and IR Absorption, Resonance Raman, EPR) and Electrochemical Study.
    Hartl F; Vlcek A
    Inorg Chem; 1996 Feb; 35(5):1257-1265. PubMed ID: 11666316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal end-on coordination of dinitrogen versus isoelectronic CO: A comparison using the charge displacement analysis.
    Schmitt M; Krossing I
    J Comput Chem; 2023 Jan; 44(3):149-158. PubMed ID: 35312076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variational Forward-Backward Charge Transfer Analysis Based on Absolutely Localized Molecular Orbitals: Energetics and Molecular Properties.
    Loipersberger M; Mao Y; Head-Gordon M
    J Chem Theory Comput; 2020 Feb; 16(2):1073-1089. PubMed ID: 31922759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chemical Bond and s-d Hybridization in Coinage Metal(I) Cyanides.
    De Santis M; Rampino S; Storchi L; Belpassi L; Tarantelli F
    Inorg Chem; 2019 Sep; 58(17):11716-11729. PubMed ID: 31398012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variational Energy Decomposition Analysis of Charge-Transfer Interactions between Metals and Ligands in Carbonyl Complexes.
    Han J; Grofe A; Gao J
    Inorg Chem; 2021 Sep; 60(18):14060-14071. PubMed ID: 34460236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 15N NMR and Electrochemical Studies of [Ru(II)(hedta)](-) Complexes of NO, NO(+), NO(2)(-), and NO(-).
    Chen Y; Lin FT; Shepherd RE
    Inorg Chem; 1999 Mar; 38(5):973-983. PubMed ID: 11670870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical Gold Carbonyl Complexes in Tetrahedral and Trigonal-Planar Settings.
    Vanga M; Muñoz-Castro A; Dias HVR
    Chemistry; 2024 Jan; 30(5):e202303339. PubMed ID: 37929919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Dewar-Chatt-Duncanson model for catalytic gold(I) complexes.
    Salvi N; Belpassi L; Tarantelli F
    Chemistry; 2010 Jun; 16(24):7231-40. PubMed ID: 20468042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.