These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29910899)

  • 1. Exploring the mineral-water interface: reduction and reaction kinetics of single hematite (α-Fe
    Shimizu K; Tschulik K; Compton RG
    Chem Sci; 2016 Feb; 7(2):1408-1414. PubMed ID: 29910899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate.
    Liu C; Zachara JM; Foster NS; Strickland J
    Environ Sci Technol; 2007 Nov; 41(22):7730-5. PubMed ID: 18075081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous water oxidation at hematite (α-Fe2O3) crystal faces.
    Chatman S; Zarzycki P; Rosso KM
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1550-9. PubMed ID: 25506667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin Water Films at Multifaceted Hematite Particle Surfaces.
    Boily JF; Yeşilbaş M; Uddin MM; Baiqing L; Trushkina Y; Salazar-Alvarez G
    Langmuir; 2015 Dec; 31(48):13127-37. PubMed ID: 26559158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions.
    Tabelin CB; Veerawattananun S; Ito M; Hiroyoshi N; Igarashi T
    Sci Total Environ; 2017 Mar; 581-582():126-135. PubMed ID: 28057346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical properties and relaxation times of the hematite/water interface.
    Shimizu K; Boily JF
    Langmuir; 2014 Aug; 30(31):9591-8. PubMed ID: 25072470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conduction Band of Hematite Can Mediate Cytochrome Reduction by Fe(II) under Dark and Anoxic Conditions.
    Liu T; Wang Y; Liu C; Li X; Cheng K; Wu Y; Fang L; Li F; Liu C
    Environ Sci Technol; 2020 Apr; 54(8):4810-4819. PubMed ID: 32084309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facet-dependent electron transfer induces distinct arsenic reallocations on hematite.
    Fang L; Chi J; Shi Q; Wu Y; Li F
    Water Res; 2023 Aug; 242():120180. PubMed ID: 37320876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH.
    Lanzl CA; Baltrusaitis J; Cwiertny DM
    Langmuir; 2012 Nov; 28(45):15797-808. PubMed ID: 23078147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface potentials of (001), (012), (113) hematite (α-Fe2O3) crystal faces in aqueous solution.
    Chatman S; Zarzycki P; Rosso KM
    Phys Chem Chem Phys; 2013 Sep; 15(33):13911-21. PubMed ID: 23846741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single Oxidative Collision Events of Silver Nanoparticles: Understanding the Rate-Determining Chemistry.
    Ngamchuea K; Clark ROD; Sokolov SV; Young NP; Batchelor-McAuley C; Compton RG
    Chemistry; 2017 Nov; 23(63):16085-16096. PubMed ID: 28922508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low-cost solvent-free method to synthesize α-Fe
    Xiang H; Ren G; Yang X; Xu D; Zhang Z; Wang X
    Ecotoxicol Environ Saf; 2020 Sep; 200():110744. PubMed ID: 32460050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pu(V)O2+ adsorption and reduction by synthetic hematite and goethite.
    Powell BA; Fjeld RA; Kaplan DI; Coates JT; Serkiz SM
    Environ Sci Technol; 2005 Apr; 39(7):2107-14. PubMed ID: 15871244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pivotal Role and Regulation of Proton Transfer in Water Oxidation on Hematite Photoanodes.
    Zhang Y; Zhang H; Ji H; Ma W; Chen C; Zhao J
    J Am Chem Soc; 2016 Mar; 138(8):2705-11. PubMed ID: 26859244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes.
    Busch VM; Loosli F; Santagapita PR; Buera MP; Stoll S
    Sci Total Environ; 2015 Nov; 532():556-63. PubMed ID: 26100735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical impedance study of the hematite/water interface.
    Shimizu K; Lasia A; Boily JF
    Langmuir; 2012 May; 28(20):7914-20. PubMed ID: 22540260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II).
    Rosso KM; Yanina SV; Gorski CA; Larese-Casanova P; Scherer MM
    Environ Sci Technol; 2010 Jan; 44(1):61-7. PubMed ID: 20039734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.