These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29911987)

  • 1. Effect of dysprosium and lutetium metal buffer layers on the resistive switching characteristics of Cu-Sn alloy-based conductive-bridge random access memory.
    Vishwanath SK; Woo H; Jeon S
    Nanotechnology; 2018 Sep; 29(38):385207. PubMed ID: 29911987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excellent Resistive Switching Performance of Cu-Se-Based Atomic Switch Using Lanthanide Metal Nanolayer at the Cu-Se/Al
    Woo H; Vishwanath SK; Jeon S
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8124-8131. PubMed ID: 29441789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer.
    Zhao X; Liu S; Niu J; Liao L; Liu Q; Xiao X; Lv H; Long S; Banerjee W; Li W; Si S; Liu M
    Small; 2017 Sep; 13(35):. PubMed ID: 28234422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductive-bridging random access memory: challenges and opportunity for 3D architecture.
    Jana D; Roy S; Panja R; Dutta M; Rahaman SZ; Mahapatra R; Maikap S
    Nanoscale Res Lett; 2015; 10():188. PubMed ID: 25977660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Uniform Resistive Switching Performances Using Two-Dimensional Electron Gas at a Thin-Film Heterostructure for Conductive Bridge Random Access Memory.
    Kim SM; Kim HJ; Jung HJ; Kim SH; Park JY; Seok TJ; Park TJ; Lee SW
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30028-30036. PubMed ID: 31343152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Observation of the Electrode-Size-Dependent Evolution Dynamics of the Conducting Filaments in a SiO
    Yuan F; Zhang Z; Liu C; Zhou F; Yau HM; Lu W; Qiu X; Wong HP; Dai J; Chai Y
    ACS Nano; 2017 Apr; 11(4):4097-4104. PubMed ID: 28319363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design on Controllable Cation Injection with Improved Conductive-Bridge Random Access Memory by Glancing Angle Deposition Technology toward Neuromorphic Application.
    Shih YC; Shen YC; Cheng YK; Chaudhary M; Yang TY; Yu YJ; Chueh YL
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55470-55480. PubMed ID: 34775743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon compatible Sn-based resistive switching memory.
    Sonde S; Chakrabarti B; Liu Y; Sasikumar K; Lin J; Stan L; Divan R; Ocola LE; Rosenmann D; Choudhury P; Ni K; Sankaranarayanan SKRS; Datta S; Guha S
    Nanoscale; 2018 May; 10(20):9441-9449. PubMed ID: 29663006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical Analysis of Uniform Switching Characteristics of Ta
    Jin S; Kwon JD; Kim Y
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Electrochemically Active Top Electrode Materials on Nanoionic Conductive Bridge Y
    Cho Y; Lee S; Heo S; Bae JH; Kang IM; Kim K; Lee WY; Jang J
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode.
    Kim JH; Nam KH; Hwang I; Cho WJ; Park B; Chung HB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9498-503. PubMed ID: 25971090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories.
    Celano U; Giammaria G; Goux L; Belmonte A; Jurczak M; Vandervorst W
    Nanoscale; 2016 Jul; 8(29):13915-23. PubMed ID: 27441315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anisotropic Magnetoresistance of Nano-conductive Filament in Co/HfO
    Li L; Liu Y; Teng J; Long S; Guo Q; Zhang M; Wu Y; Yu G; Liu Q; Lv H; Liu M
    Nanoscale Res Lett; 2017 Dec; 12(1):210. PubMed ID: 28335585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistive Switching Performance Improvement via Modulating Nanoscale Conductive Filament, Involving the Application of Two-Dimensional Layered Materials.
    Li Y; Long S; Liu Q; Lv H; Liu M
    Small; 2017 Sep; 13(35):. PubMed ID: 28417548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable and reliable IGZO resistive switching device with HfAlO
    Peng H; Liu H; Ma X; Cheng X
    Nanotechnology; 2023 Jun; 34(36):. PubMed ID: 37192603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of device size and thickness of Al2O 3 film on the Cu pillar and resistive switching characteristics for 3D cross-point memory application.
    Panja R; Roy S; Jana D; Maikap S
    Nanoscale Res Lett; 2014 Dec; 9(1):2410. PubMed ID: 26088986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conductive bridge random access memory characteristics of SiCN based transparent device due to indium diffusion.
    Kumar D; Aluguri R; Chand U; Tseng TY
    Nanotechnology; 2018 Mar; 29(12):125202. PubMed ID: 29350624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical characteristics of reset switching in Cu/HfO2/Pt resistive switching memory.
    Zhang M; Long S; Wang G; Liu R; Xu X; Li Y; Xu D; Liu Q; Lv H; Miranda E; Suñé J; Liu M
    Nanoscale Res Lett; 2014 Dec; 9(1):2500. PubMed ID: 26089007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Concentration Effect on Conductive Bridge Random Access Memory of InWZnO Thin Film.
    Hsu CC; Liu PT; Gan KJ; Ruan DB; Sze SM
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key material parameters driving CBRAM device performances.
    Goux L; Radhakrishnan J; Belmonte A; Witters T; Devulder W; Redolfi A; Kundu S; Houssa M; Kar GS
    Faraday Discuss; 2019 Feb; 213(0):67-85. PubMed ID: 30346458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.