These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29912191)

  • 1. Adaptation of Hybridization Capture of Chromatin-associated Proteins for Proteomics to Mammalian Cells.
    Guillen-Ahlers H; Rao PK; Perumalla DS; Montoya MJ; Jadhav AYL; Shortreed MR; Smith LM; Olivier M
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29912191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae.
    Guillen-Ahlers H; Rao PK; Levenstein ME; Kennedy-Darling J; Perumalla DS; Jadhav AY; Glenn JP; Ludwig-Kubinski A; Drigalenko E; Montoya MJ; Göring HH; Anderson CD; Scalf M; Gildersleeve HI; Cole R; Greene AM; Oduro AK; Lazarova K; Cesnik AJ; Barfknecht J; Cirillo LA; Gasch AP; Shortreed MR; Smith LM; Olivier M
    Genomics; 2016 Jun; 107(6):267-73. PubMed ID: 27184763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Chromatin-Associated Proteins via Sequence-Specific Capture and Mass Spectrometric Protein Identification in Saccharomyces cerevisiae.
    Kennedy-Darling J; Guillen-Ahlers H; Shortreed MR; Scalf M; Frey BL; Kendziorski C; Olivier M; Gasch AP; Smith LM
    J Proteome Res; 2014 Aug; 13(8):3810-25. PubMed ID: 24999558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed Sequence-Specific Capture of Chromatin and Mass Spectrometric Discovery of Associated Proteins.
    Dai Y; Kennedy-Darling J; Shortreed MR; Scalf M; Gasch AP; Smith LM
    Anal Chem; 2017 Aug; 89(15):7841-7846. PubMed ID: 28654248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating Protein-DNA Interactions in Human Alphoid Chromatin via Hybridization Capture and Mass Spectrometry.
    Buxton KE; Kennedy-Darling J; Shortreed MR; Zaidan NZ; Olivier M; Scalf M; Sridharan R; Smith LM
    J Proteome Res; 2017 Sep; 16(9):3433-3442. PubMed ID: 28704058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChIP-chip for genome-wide analysis of protein binding in mammalian cells.
    Kim TH; Barrera LO; Ren B
    Curr Protoc Mol Biol; 2007 Jul; Chapter 21():Unit 21.13. PubMed ID: 18265397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome Characterization of a Chromatin Locus Using the Proteomics of Isolated Chromatin Segments Approach.
    Kan SL; Saksouk N; Déjardin J
    Methods Mol Biol; 2017; 1550():19-33. PubMed ID: 28188520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants.
    Posé D; Yant L
    Methods Mol Biol; 2016; 1363():25-35. PubMed ID: 26577778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro chromatin immunoprecipitation (μChIP) from early mammalian embryos.
    Dahl JA; Klungland A
    Methods Mol Biol; 2015; 1222():227-45. PubMed ID: 25287350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Chromatin Immunoprecipitation in Candida albicans and Other Yeasts.
    Lohse MB; Kongsomboonvech P; Madrigal M; Hernday AD; Nobile CJ
    Methods Mol Biol; 2016; 1361():161-84. PubMed ID: 26483022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the distribution of chromatin proteins by ChIP on chip.
    Nègre N; Lavrov S; Hennetin J; Bellis M; Cavalli G
    Methods Enzymol; 2006; 410():316-41. PubMed ID: 16938558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods.
    Reimer JJ; Turck F
    Methods Mol Biol; 2010; 631():139-60. PubMed ID: 20204874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobody-based chromatin immunoprecipitation.
    Duc TN; Hassanzadeh-Ghassabeh G; Saerens D; Peeters E; Charlier D; Muyldermans S
    Methods Mol Biol; 2012; 911():491-505. PubMed ID: 22886272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation.
    Nowak DE; Tian B; Brasier AR
    Biotechniques; 2005 Nov; 39(5):715-25. PubMed ID: 16315372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of in vivo transcription factor recruitment by chromatin immunoprecipitation of mouse embryonic kidney.
    Heliot C; Cereghini S
    Methods Mol Biol; 2012; 886():275-91. PubMed ID: 22639270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of chromatin composition of repetitive sequences: the ChIP-Chop assay.
    Santoro R
    Methods Mol Biol; 2014; 1094():319-28. PubMed ID: 24162999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods to Identify Chromatin-Bound Protein Complexes: From Genome-Wide to Locus-Specific Approaches.
    Massie CE
    Methods Mol Biol; 2016; 1443():139-50. PubMed ID: 27246338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin immunoprecipitation-based analysis of gene regulatory networks operative in human embryonic stem cells.
    Jung M; Adjaye J
    Methods Mol Biol; 2012; 873():269-80. PubMed ID: 22528362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Protein-DNA Interaction by Chromatin Immunoprecipitation and DNA Tiling Microarray (ChIP-on-chip).
    Gao H; Zhao C
    Methods Mol Biol; 2018; 1689():43-51. PubMed ID: 29027163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced methods for the analysis of chromatin-associated proteins.
    Guillen-Ahlers H; Shortreed MR; Smith LM; Olivier M
    Physiol Genomics; 2014 Jul; 46(13):441-7. PubMed ID: 24803678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.