These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29912363)

  • 1. Cross-Task Contributions of Frontobasal Ganglia Circuitry in Response Inhibition and Conflict-Induced Slowing.
    Jahfari S; Ridderinkhof KR; Collins AGE; Knapen T; Waldorp LJ; Frank MJ
    Cereb Cortex; 2019 May; 29(5):1969-1983. PubMed ID: 29912363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective connectivity reveals important roles for both the hyperdirect (fronto-subthalamic) and the indirect (fronto-striatal-pallidal) fronto-basal ganglia pathways during response inhibition.
    Jahfari S; Waldorp L; van den Wildenberg WP; Scholte HS; Ridderinkhof KR; Forstmann BU
    J Neurosci; 2011 May; 31(18):6891-9. PubMed ID: 21543619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontosubthalamic Circuits for Control of Action and Cognition.
    Aron AR; Herz DM; Brown P; Forstmann BU; Zaghloul K
    J Neurosci; 2016 Nov; 36(45):11489-11495. PubMed ID: 27911752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surprise: Unexpected Action Execution and Unexpected Inhibition Recruit the Same Fronto-Basal-Ganglia Network.
    Sebastian A; Konken AM; Schaum M; Lieb K; Tüscher O; Jung P
    J Neurosci; 2021 Mar; 41(11):2447-2456. PubMed ID: 33376157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task.
    Watanabe T; Hanajima R; Shirota Y; Tsutsumi R; Shimizu T; Hayashi T; Terao Y; Ugawa Y; Katsura M; Kunimatsu A; Ohtomo K; Hirose S; Miyashita Y; Konishi S
    J Neurosci; 2015 Mar; 35(12):4813-23. PubMed ID: 25810512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus.
    Aron AR; Poldrack RA
    J Neurosci; 2006 Mar; 26(9):2424-33. PubMed ID: 16510720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging and inhibitory control of action: cortico-subthalamic connection strength predicts stopping performance.
    Coxon JP; Van Impe A; Wenderoth N; Swinnen SP
    J Neurosci; 2012 Jun; 32(24):8401-12. PubMed ID: 22699920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchically Organized Medial Frontal Cortex-Basal Ganglia Loops Selectively Control Task- and Response-Selection.
    Korb FM; Jiang J; King JA; Egner T
    J Neurosci; 2017 Aug; 37(33):7893-7905. PubMed ID: 28716966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fMRI and EEG predictors of dynamic decision parameters during human reinforcement learning.
    Frank MJ; Gagne C; Nyhus E; Masters S; Wiecki TV; Cavanagh JF; Badre D
    J Neurosci; 2015 Jan; 35(2):485-94. PubMed ID: 25589744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions.
    Jahfari S; Verbruggen F; Frank MJ; Waldorp LJ; Colzato L; Ridderinkhof KR; Forstmann BU
    J Neurosci; 2012 Aug; 32(32):10870-8. PubMed ID: 22875921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition.
    Duann JR; Ide JS; Luo X; Li CS
    J Neurosci; 2009 Aug; 29(32):10171-9. PubMed ID: 19675251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choosing not to act: neural bases of the development of intentional inhibition.
    Schel MA; Ridderinkhof KR; Crone EA
    Dev Cogn Neurosci; 2014 Oct; 10():93-103. PubMed ID: 25198093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subthalamic stimulation, oscillatory activity and connectivity reveal functional role of STN and network mechanisms during decision making under conflict.
    Hell F; Taylor PCJ; Mehrkens JH; Bötzel K
    Neuroimage; 2018 May; 171():222-233. PubMed ID: 29307607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategy switches in proactive inhibitory control and their association with task-general and stopping-specific networks.
    Messel MS; Raud L; Hoff PK; Skaftnes CS; Huster RJ
    Neuropsychologia; 2019 Dec; 135():107220. PubMed ID: 31586553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcortical processes of motor response inhibition during a stop signal task.
    Li CS; Yan P; Sinha R; Lee TW
    Neuroimage; 2008 Jul; 41(4):1352-63. PubMed ID: 18485743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual information shapes the dynamics of corticobasal ganglia pathways during response selection and inhibition.
    Jahfari S; Waldorp L; Ridderinkhof KR; Scholte HS
    J Cogn Neurosci; 2015 Jul; 27(7):1344-59. PubMed ID: 25647338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subthalamic Nucleus Activation Occurs Early during Stopping and Is Associated with Trait Impulsivity.
    Yoon JH; Cui EDB; Minzenberg MJ; Carter CS
    J Cogn Neurosci; 2019 Apr; 31(4):510-521. PubMed ID: 30605003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making.
    Frank MJ
    Neural Netw; 2006 Oct; 19(8):1120-36. PubMed ID: 16945502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A proactive task set influences how response inhibition is implemented in the basal ganglia.
    Leunissen I; Coxon JP; Swinnen SP
    Hum Brain Mapp; 2016 Dec; 37(12):4706-4717. PubMed ID: 27489078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence.
    Guo Y; Schmitz TW; Mur M; Ferreira CS; Anderson MC
    Neuropsychologia; 2018 Jan; 108():117-134. PubMed ID: 29199109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.