These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. CRISPR/Cas9 Technology Applied to the Study of Proteins Involved in Calcium Signaling in Trypanosoma cruzi. Lander N; Chiurillo MA; Docampo R Methods Mol Biol; 2020; 2116():177-197. PubMed ID: 32221922 [TBL] [Abstract][Full Text] [Related]
7. Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania. Zhang WW; Lypaczewski P; Matlashewski G Methods Mol Biol; 2020; 2116():199-224. PubMed ID: 32221923 [TBL] [Abstract][Full Text] [Related]
8. Acetylation of histone H4K4 is cell cycle regulated and mediated by HAT3 in Trypanosoma brucei. Siegel TN; Kawahara T; Degrasse JA; Janzen CJ; Horn D; Cross GA Mol Microbiol; 2008 Feb; 67(4):762-71. PubMed ID: 18179414 [TBL] [Abstract][Full Text] [Related]
9. CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO Li J; Zhang L; Xu Q; Zhang W; Li Z; Chen L; Dong X Microbiol Spectr; 2022 Aug; 10(4):e0116522. PubMed ID: 35766512 [TBL] [Abstract][Full Text] [Related]
10. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions. Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893 [TBL] [Abstract][Full Text] [Related]
11. State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids. Lander N; Chiurillo MA J Eukaryot Microbiol; 2019 Nov; 66(6):981-991. PubMed ID: 31211904 [TBL] [Abstract][Full Text] [Related]
13. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species. Wang P mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980 [No Abstract] [Full Text] [Related]
14. Recent advances in genome editing of bloodstream forms of Trypanosoma congolense using CRISPR-Cas9 ribonucleoproteins: Proof of concept. Minet C; Chantal I; Berthier D Exp Parasitol; 2023 Sep; 252():108589. PubMed ID: 37516291 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans. Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Cell Line Stability by CRISPR/Cas9-Mediated Site-Specific Integration Based on Histone Modifications. Hertel O; Neuss A Methods Mol Biol; 2024; 2810():211-233. PubMed ID: 38926282 [TBL] [Abstract][Full Text] [Related]
17. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants. Burle-Caldas GA; Soares-Simões M; Lemos-Pechnicki L; DaRocha WD; Teixeira SMR Int J Parasitol; 2018 Jul; 48(8):591-596. PubMed ID: 29577891 [TBL] [Abstract][Full Text] [Related]
18. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Tadić V; Josipović G; Zoldoš V; Vojta A Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448 [TBL] [Abstract][Full Text] [Related]
19. Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function. Crain AT; Nevil M; Leatham-Jensen MP; Reeves KB; Matera AG; McKay DJ; Duronio RJ Genetics; 2024 Sep; 228(1):. PubMed ID: 39039029 [TBL] [Abstract][Full Text] [Related]
20. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Li X; Chen W; Martin BK; Calderon D; Lee C; Choi J; Chardon FM; McDiarmid TA; Daza RM; Kim H; Lalanne JB; Nathans JF; Lee DS; Shendure J Cell; 2024 May; 187(10):2411-2427.e25. PubMed ID: 38608704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]