These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29912461)

  • 1. Exploiting CRISPR-Cas9 technology to investigate individual histone modifications.
    Vasquez JJ; Wedel C; Cosentino RO; Siegel TN
    Nucleic Acids Res; 2018 Oct; 46(18):e106. PubMed ID: 29912461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transient CRISPR/Cas9 expression system for genome editing in Trypanosoma brucei.
    Shaw S; Knüsel S; Hoenner S; Roditi I
    BMC Res Notes; 2020 Jun; 13(1):268. PubMed ID: 32493474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible high-efficiency CRISPR-Cas9-targeted gene editing and precision base editing in African trypanosomes.
    Rico E; Jeacock L; Kovářová J; Horn D
    Sci Rep; 2018 May; 8(1):7960. PubMed ID: 29785042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting targeted genome editing using the hei-tag.
    Thumberger T; Tavhelidse-Suck T; Gutierrez-Triana JA; Cornean A; Medert R; Welz B; Freichel M; Wittbrodt J
    Elife; 2022 Mar; 11():. PubMed ID: 35333175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 Technology Applied to the Study of Proteins Involved in Calcium Signaling in Trypanosoma cruzi.
    Lander N; Chiurillo MA; Docampo R
    Methods Mol Biol; 2020; 2116():177-197. PubMed ID: 32221922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CRISPR/Cas9-Mediated Genome Editing in Leishmania.
    Zhang WW; Lypaczewski P; Matlashewski G
    Methods Mol Biol; 2020; 2116():199-224. PubMed ID: 32221923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylation of histone H4K4 is cell cycle regulated and mediated by HAT3 in Trypanosoma brucei.
    Siegel TN; Kawahara T; Degrasse JA; Janzen CJ; Horn D; Cross GA
    Mol Microbiol; 2008 Feb; 67(4):762-71. PubMed ID: 18179414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO
    Li J; Zhang L; Xu Q; Zhang W; Li Z; Chen L; Dong X
    Microbiol Spectr; 2022 Aug; 10(4):e0116522. PubMed ID: 35766512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids.
    Lander N; Chiurillo MA
    J Eukaryot Microbiol; 2019 Nov; 66(6):981-991. PubMed ID: 31211904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 14. Recent advances in genome editing of bloodstream forms of Trypanosoma congolense using CRISPR-Cas9 ribonucleoproteins: Proof of concept.
    Minet C; Chantal I; Berthier D
    Exp Parasitol; 2023 Sep; 252():108589. PubMed ID: 37516291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Cell Line Stability by CRISPR/Cas9-Mediated Site-Specific Integration Based on Histone Modifications.
    Hertel O; Neuss A
    Methods Mol Biol; 2024; 2810():211-233. PubMed ID: 38926282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants.
    Burle-Caldas GA; Soares-Simões M; Lemos-Pechnicki L; DaRocha WD; Teixeira SMR
    Int J Parasitol; 2018 Jul; 48(8):591-596. PubMed ID: 29577891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redesigning the Drosophila histone gene cluster: an improved genetic platform for spatiotemporal manipulation of histone function.
    Crain AT; Nevil M; Leatham-Jensen MP; Reeves KB; Matera AG; McKay DJ; Duronio RJ
    Genetics; 2024 Sep; 228(1):. PubMed ID: 39039029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin context-dependent regulation and epigenetic manipulation of prime editing.
    Li X; Chen W; Martin BK; Calderon D; Lee C; Choi J; Chardon FM; McDiarmid TA; Daza RM; Kim H; Lalanne JB; Nathans JF; Lee DS; Shendure J
    Cell; 2024 May; 187(10):2411-2427.e25. PubMed ID: 38608704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.