These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29912567)

  • 1. Stretchable Nanolasing from Hybrid Quadrupole Plasmons.
    Wang D; Bourgeois MR; Lee WK; Li R; Trivedi D; Knudson MP; Wang W; Schatz GC; Odom TW
    Nano Lett; 2018 Jul; 18(7):4549-4555. PubMed ID: 29912567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Hybridization in Plasmonic Honeycomb Lattices.
    Li R; Bourgeois MR; Cherqui C; Guan J; Wang D; Hu J; Schaller RD; Schatz GC; Odom TW
    Nano Lett; 2019 Sep; 19(9):6435-6441. PubMed ID: 31390214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays.
    Deeb C; Guo Z; Yang A; Huang L; Odom TW
    Nano Lett; 2018 Feb; 18(2):1454-1459. PubMed ID: 29369639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultranarrow plasmon resonances from annealed nanoparticle lattices.
    Deng S; Li R; Park JE; Guan J; Choo P; Hu J; Smeets PJM; Odom TW
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23380-23384. PubMed ID: 32900952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Lattice Resonances in Self-Assembled Arrays of Monodisperse Ag Cuboctahedra.
    Juodėnas M; Tamulevičius T; Henzie J; Erts D; Tamulevičius S
    ACS Nano; 2019 Aug; 13(8):9038-9047. PubMed ID: 31329417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Brillouin Zones by In-Plane Lasing from Light-Cone Surface Lattice Resonances.
    Guan J; Bourgeois MR; Li R; Hu J; Schaller RD; Schatz GC; Odom TW
    ACS Nano; 2021 Mar; 15(3):5567-5573. PubMed ID: 33689315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unidirectional Lasing from Mirror-Coupled Dielectric Lattices.
    Zhao G; Gao X; Zhou Y; Song M; Du Y; Li Z; Guan J; Cai Y; Ao X
    Nano Lett; 2024 Mar; 24(11):3378-3385. PubMed ID: 38456747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns.
    Guan J; Sagar LK; Li R; Wang D; Bappi G; Wang W; Watkins N; Bourgeois MR; Levina L; Fan F; Hoogland S; Voznyy O; de Pina JM; Schaller RD; Schatz GC; Sargent EH; Odom TW
    ACS Nano; 2020 Mar; 14(3):3426-3433. PubMed ID: 32049478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable and reversible plasmon mode engineering.
    Yang A; Hryn AJ; Bourgeois MR; Lee WK; Hu J; Schatz GC; Odom TW
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14201-14206. PubMed ID: 27911819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic bowtie nanolaser arrays.
    Suh JY; Kim CH; Zhou W; Huntington MD; Co DT; Wasielewski MR; Odom TW
    Nano Lett; 2012 Nov; 12(11):5769-74. PubMed ID: 23013283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lasing in Ni Nanodisk Arrays.
    Pourjamal S; Hakala TK; Nečada M; Freire-Fernández F; Kataja M; Rekola H; Martikainen JP; Törmä P; van Dijken S
    ACS Nano; 2019 May; 13(5):5686-5692. PubMed ID: 30973219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perovskite Quantum Dot Lasing in a Gap-Plasmon Nanocavity with Ultralow Threshold.
    Hsieh YH; Hsu BW; Peng KN; Lee KW; Chu CW; Chang SW; Lin HW; Yen TJ; Lu YJ
    ACS Nano; 2020 Sep; 14(9):11670-11676. PubMed ID: 32701270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast dynamics of nanoplasmonic stopped-light lasing.
    Wuestner S; Pickering T; Hamm JM; Page AF; Pusch A; Hess O
    Faraday Discuss; 2015; 178():307-24. PubMed ID: 25778453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Nanoparticle Lattice Devices for White-Light Lasing.
    Guan J; Li R; Juarez XG; Sample AD; Wang Y; Schatz GC; Odom TW
    Adv Mater; 2023 Aug; 35(34):e2103262. PubMed ID: 34510573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices.
    Wang D; Yang A; Wang W; Hua Y; Schaller RD; Schatz GC; Odom TW
    Nat Nanotechnol; 2017 Sep; 12(9):889-894. PubMed ID: 28692060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretchable array of metal nanodisks on a 3D sinusoidal wavy elastomeric substrate for frequency tunable plasmonics.
    Feng D; Zhang H; Xu S; Tian L; Song N
    Nanotechnology; 2017 Mar; 28(11):115703. PubMed ID: 28195075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of a spaser-based nanolaser.
    Noginov MA; Zhu G; Belgrave AM; Bakker R; Shalaev VM; Narimanov EE; Stout S; Herz E; Suteewong T; Wiesner U
    Nature; 2009 Aug; 460(7259):1110-2. PubMed ID: 19684572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanotunable Surface Lattice Resonances in the Visible Optical Range by Soft Lithography Templates and Directed Self-Assembly.
    Gupta V; Probst PT; Goßler FR; Steiner AM; Schubert J; Brasse Y; König TAF; Fery A
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28189-28196. PubMed ID: 31298836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.