BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29912632)

  • 1. Movements with greater trunk accelerations and their properties during badminton games.
    Nagano Y; Sasaki S; Higashihara A; Ichikawa H
    Sports Biomech; 2020 Jun; 19(3):342-352. PubMed ID: 29912632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loading differences in single-leg landing in the forehand- and backhand-side courts after an overhead stroke in badminton: A novel tri-axial accelerometer research.
    Sasaki S; Nagano Y; Ichikawa H
    J Sports Sci; 2018 Dec; 36(24):2794-2801. PubMed ID: 29745786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in high trunk acceleration during single-leg landing after an overhead stroke between junior and adolescent badminton athletes.
    Sasaki S; Nagano Y; Ichikawa H
    Sports Biomech; 2022 Nov; 21(10):1160-1175. PubMed ID: 32326846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceleration Profile of High-Intensity Movements in Basketball Games.
    Koyama T; Rikukawa A; Nagano Y; Sasaki S; Ichikawa H; Hirose N
    J Strength Cond Res; 2022 Jun; 36(6):1715-1719. PubMed ID: 32639378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics.
    Phomsoupha M; Laffaye G
    Sports Med; 2015 Apr; 45(4):473-95. PubMed ID: 25549780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How does knee pain affect trunk and knee motion during badminton forehand lunges?
    Huang MT; Lee HH; Lin CF; Tsai YJ; Liao JC
    J Sports Sci; 2014; 32(7):690-700. PubMed ID: 24404882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.
    Schütte KH; Maas EA; Exadaktylos V; Berckmans D; Venter RE; Vanwanseele B
    PLoS One; 2015; 10(10):e0141957. PubMed ID: 26517261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Better position for the wearable sensor to monitor badminton sport training loads.
    Liu TH; Chen WH; Shih Y; Lin YC; Yu C; Shiang TY
    Sports Biomech; 2024 Apr; 23(4):503-515. PubMed ID: 33663329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical analysis of common lunge tasks in badminton.
    Kuntze G; Mansfield N; Sellers W
    J Sports Sci; 2010 Jan; 28(2):183-91. PubMed ID: 20391092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of being elastic: deflection of a badminton racket during a stroke.
    Kwan M; Rasmussen J
    J Sports Sci; 2010 Mar; 28(5):505-11. PubMed ID: 20373199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased knee valgus alignment and moment during single-leg landing after overhead stroke as a potential risk factor of anterior cruciate ligament injury in badminton.
    Kimura Y; Ishibashi Y; Tsuda E; Yamamoto Y; Hayashi Y; Sato S
    Br J Sports Med; 2012 Mar; 46(3):207-13. PubMed ID: 21536708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The practical application of a method of analysing the variability of within-step accelerations collected via athlete tracking devices.
    Buttfield A; Ball K
    J Sports Sci; 2020 Feb; 38(3):343-350. PubMed ID: 31809646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of racket-shuttlecock impact location on shot outcome for badminton smashes by elite players.
    McErlain-Naylor SA; Towler H; Afzal IA; Felton PJ; Hiley MJ; King MA
    J Sports Sci; 2020 Nov; 38(21):2471-2478. PubMed ID: 32662349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steps for arm and trunk actions of overhead forehand stroke used in badminton games across skill levels.
    Wang J; Liu W; Moffit J
    Percept Mot Skills; 2009 Aug; 109(1):177-86. PubMed ID: 19831099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Relationship Between Whole-Body External Loading and Body-Worn Accelerometry During Team-Sport Movements.
    Nedergaard NJ; Robinson MA; Eusterwiemann E; Drust B; Lisboa PJ; Vanrenterghem J
    Int J Sports Physiol Perform; 2017 Jan; 12(1):18-26. PubMed ID: 27002795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coupling between gaze behavior and opponent kinematics during anticipation of badminton shots.
    Alder D; Ford PR; Causer J; Williams AM
    Hum Mov Sci; 2014 Oct; 37():167-79. PubMed ID: 25222127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical analysis of knee and trunk in badminton players with and without knee pain during backhand diagonal lunges.
    Lin CF; Hua SH; Huang MT; Lee HH; Liao JC
    J Sports Sci; 2015; 33(14):1429-39. PubMed ID: 25574707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying compensatory movement patterns in the upper extremity using a wearable sensor system.
    Ranganathan R; Wang R; Dong B; Biswas S
    Physiol Meas; 2017 Nov; 38(12):2222-2234. PubMed ID: 29099724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Analysis Methods to Assess Professional Badminton Players' Lunge Performance.
    Huang P; Fu L; Zhang Y; Fekete G; Ren F; Gu Y
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31259912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic and kinetic analysis of overhand, sidearm and underhand lacrosse shot techniques.
    Macaulay CAJ; Katz L; Stergiou P; Stefanyshyn D; Tomaghelli L
    J Sports Sci; 2017 Dec; 35(23):2350-2356. PubMed ID: 27981885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.