BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29913067)

  • 1. Mass Production of Biocompatible Graphene Using Silk Nanofibers.
    Zhang X; Wang L; Lu Q; Kaplan DL
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):22924-22931. PubMed ID: 29913067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endotoxin-Free Preparation of Graphene Oxide and Graphene-Based Materials for Biological Applications.
    Parviz D; Strano M
    Curr Protoc Chem Biol; 2018 Dec; 10(4):e51. PubMed ID: 30285316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
    Zeng L; Jiang L; Teng W; Cappello J; Zohar Y; Wu X
    Macromol Rapid Commun; 2014 Jul; 35(14):1273-9. PubMed ID: 24798978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced hydrophilic and antibacterial efficiencies by the synergetic effect TiO
    Jia L; Huang X; Liang H; Tao Q
    Int J Biol Macromol; 2019 Jul; 132():1039-1043. PubMed ID: 30926506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new electrospun graphene-silk fibroin composite scaffolds for guiding Schwann cells.
    Zhao Y; Gong J; Niu C; Wei Z; Shi J; Li G; Yang Y; Wang H
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2171-2185. PubMed ID: 28967299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery.
    Li S; Shu K; Zhao C; Wang C; Guo Z; Wallace G; Liu HK
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16679-86. PubMed ID: 25198621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers.
    Jin L; Wu D; Kuddannaya S; Zhang Y; Wang Z
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5170-7. PubMed ID: 26836319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-yield graphene produced from the synergistic effect of inflated temperature and gelatin offers high stability and cellular compatibility.
    Tiwari P; Kaur N; Sharma V; Mobin SM
    Phys Chem Chem Phys; 2018 Aug; 20(30):20096-20107. PubMed ID: 30024577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.
    Dong X; Zhao Q; Xiao L; Lu Q; Kaplan DL
    Biomacromolecules; 2016 Sep; 17(9):3000-6. PubMed ID: 27476755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Top-Down Extraction of Silk Protein Nanofibers by Natural Deep Eutectic Solvents and Application in Dispersion of Multiwalled Carbon Nanotubes for Wearable Sensing.
    Tan X; Wang Y; Du W; Mu T
    ChemSusChem; 2020 Jan; 13(2):321-327. PubMed ID: 31729788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragile-Tough Mechanical Reversion of Silk Materials via Tuning Supramolecular Assembly.
    Zhang X; Xiao L; Ding Z; Lu Q; Kaplan DL
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2337-2345. PubMed ID: 33835795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-protein based nanofibers in pharmaceutical and biomedical applications.
    Yıldız A; Kara AA; Acartürk F
    Int J Biol Macromol; 2020 Apr; 148():1084-1097. PubMed ID: 31917213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-assisted assembly of a histidine-rich lipidated peptide for simultaneous exfoliation of graphite and functionalization of graphene nanosheets.
    Zhang L; Sheng Y; Zehtab Yazdi A; Sarikhani K; Wang F; Jiang Y; Liu J; Zheng T; Wang W; Ouyang P; Chen P
    Nanoscale; 2019 Feb; 11(6):2999-3012. PubMed ID: 30698183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust microcapsules with controlled permeability from silk fibroin reinforced with graphene oxide.
    Ye C; Combs ZA; Calabrese R; Dai H; Kaplan DL; Tsukruk VV
    Small; 2014 Dec; 10(24):5087-97. PubMed ID: 25104349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-yield production of graphene by liquid-phase exfoliation of graphite.
    Hernandez Y; Nicolosi V; Lotya M; Blighe FM; Sun Z; De S; McGovern IT; Holland B; Byrne M; Gun'Ko YK; Boland JJ; Niraj P; Duesberg G; Krishnamurthy S; Goodhue R; Hutchison J; Scardaci V; Ferrari AC; Coleman JN
    Nat Nanotechnol; 2008 Sep; 3(9):563-8. PubMed ID: 18772919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation mechanism and control of blended eri and tasar silk nanofiber.
    Panda N; Biswas A; Sukla LB; Pramanik K
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2403-12. PubMed ID: 25227684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering.
    Gao Y; Shao W; Qian W; He J; Zhou Y; Qi K; Wang L; Cui S; Wang R
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():195-207. PubMed ID: 29519429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk-Elastin-Like-Protein/Graphene-Oxide Composites for Dynamic Electronic Biomaterials.
    Martín-Moldes Z; Spey Q; Bhatacharya T; Kaplan DL
    Macromol Biosci; 2022 Aug; 22(8):e2200122. PubMed ID: 35634798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of silk fibroins improves the cytocompatibility of silk fibroin derived materials: a platform for the production of tuneable material.
    Volkov V; Vasconcelos A; Sárria MP; Gomes AC; Cavaco-Paulo A
    Biotechnol J; 2014 Oct; 9(10):1267-78. PubMed ID: 25087614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.