These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29913192)

  • 1. Immobilization of Penaeus vannamei protease on ZnO nanoparticles for long-term use.
    Diyanat S; Homaei A; Mosaddegh E
    Int J Biol Macromol; 2018 Oct; 118(Pt A):92-98. PubMed ID: 29913192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penaeus vannamei protease stabilizing process of ZnS nanoparticles.
    Razzaghi M; Homaei A; Mosaddegh E
    Int J Biol Macromol; 2018 Jun; 112():509-515. PubMed ID: 29382577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved features of a highly stable protease from Penaeus vannamei by immobilization on glutaraldehyde activated graphene oxide nanosheets.
    Ranjbari N; Razzaghi M; Fernandez-Lafuente R; Shojaei F; Satari M; Homaei A
    Int J Biol Macromol; 2019 Jun; 130():564-572. PubMed ID: 30831167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc oxide nanoparticles-impregnated chitosan surfaces for covalent immobilization of trypsin: Stability & kinetic studies.
    Aggarwal S; Ikram S
    Int J Biol Macromol; 2022 May; 207():205-221. PubMed ID: 35259431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aspartic acid introduce the functional amine groups on the surface of superparamagnetic Fe(OH)
    Moslemi M; Homaei A; Toiserkani H
    Bioprocess Biosyst Eng; 2018 Jun; 41(6):749-756. PubMed ID: 29417222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc sulfide-chitosan hybrid nanoparticles as a robust surface for immobilization of Sillago sihama α-amylase.
    Bahri S; Homaei A; Mosaddegh E
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112754. PubMed ID: 35963144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Fe
    Ulu A; Noma SAA; Koytepe S; Ates B
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):1035-1045. PubMed ID: 29873527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Immobilization of Porcine Pancreatic α-Amylase on Amino-Functionalized Magnetite Nanoparticles: Characterization and Stability Evaluation of the Immobilized Enzyme.
    Akhond M; Pashangeh K; Karbalaei-Heidari HR; Absalan G
    Appl Biochem Biotechnol; 2016 Nov; 180(5):954-968. PubMed ID: 27240662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of changing the nanoscale environment on activity and stability of nitrate reductase.
    Sachdeva V; Hooda V
    Enzyme Microb Technol; 2016 Jul; 89():52-62. PubMed ID: 27233127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes.
    Singh V; Rakshit K; Rathee S; Angmo S; Kaushal S; Garg P; Chung JH; Sandhir R; Sangwan RS; Singhal N
    Bioresour Technol; 2016 Aug; 214():528-533. PubMed ID: 27176673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilization of Euphorbia tirucalli peroxidase onto chitosan-cobalt oxide magnetic nanoparticles and optimization using response surface methodology.
    Shukla A; Gundampati RK; Jagannadham MV
    Int J Biol Macromol; 2017 Sep; 102():384-395. PubMed ID: 28363649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in biochemical characteristics of cross-linked enzyme aggregates (CLEAs) with magnetic nanoparticles as support matrix.
    Doraiswamy N; Sarathi M; Pennathur G
    Methods Enzymol; 2020; 630():133-158. PubMed ID: 31931983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-linked esterase aggregates (CLEAs) using nanoparticles as immobilization matrix.
    Doraiswamy N; Sarathi M; Pennathur G
    Prep Biochem Biotechnol; 2019; 49(3):270-278. PubMed ID: 30794034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-Agarase immobilized on tannic acid-modified Fe
    Xiao Q; Liu C; Ni H; Zhu Y; Jiang Z; Xiao A
    Food Chem; 2019 Jan; 272():586-595. PubMed ID: 30309586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles.
    Atacan K; Özacar M
    Colloids Surf B Biointerfaces; 2015 Apr; 128():227-236. PubMed ID: 25686792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloro-Modified Magnetic Fe
    Ulu A; Noma SAA; Koytepe S; Ates B
    Appl Biochem Biotechnol; 2019 Mar; 187(3):938-956. PubMed ID: 30101367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular imprinting and immobilization of cellulase onto magnetic Fe3O4@SiO2 nanoparticles.
    Li Y; Wang XY; Zhang RZ; Zhang XY; Liu W; Xu XM; Zhang YW
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2931-6. PubMed ID: 24734713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soybean peroxidase immobilized onto silica-coated superparamagnetic iron oxide nanoparticles: Effect of silica layer on the enzymatic activity.
    Donadelli JA; García Einschlag FS; Laurenti E; Magnacca G; Carlos L
    Colloids Surf B Biointerfaces; 2018 Jan; 161():654-661. PubMed ID: 29169120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase.
    Sui Y; Cui Y; Nie Y; Xia GM; Sun GX; Han JT
    Colloids Surf B Biointerfaces; 2012 May; 93():24-8. PubMed ID: 22225941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Biophysical and Computational Study of Concanavalin A Immobilized Zinc Oxide Nanoparticles.
    Naeem A; Alam MT; Khan TA; Husain Q
    Protein Pept Lett; 2018 Feb; 24(12):1096-1104. PubMed ID: 28933278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.