These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 29913224)

  • 1. Canonical and non-canonical mechanisms of Nrf2 activation.
    Silva-Islas CA; Maldonado PD
    Pharmacol Res; 2018 Aug; 134():92-99. PubMed ID: 29913224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.
    Taguchi K; Motohashi H; Yamamoto M
    Genes Cells; 2011 Feb; 16(2):123-40. PubMed ID: 21251164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation.
    He X; Ma Q
    Mol Pharmacol; 2009 Dec; 76(6):1265-78. PubMed ID: 19786557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62.
    Lau A; Wang XJ; Zhao F; Villeneuve NF; Wu T; Jiang T; Sun Z; White E; Zhang DD
    Mol Cell Biol; 2010 Jul; 30(13):3275-85. PubMed ID: 20421418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Keap1-Nrf2 system and diabetes mellitus.
    Uruno A; Yagishita Y; Yamamoto M
    Arch Biochem Biophys; 2015 Jan; 566():76-84. PubMed ID: 25528168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents.
    Giudice A; Arra C; Turco MC
    Methods Mol Biol; 2010; 647():37-74. PubMed ID: 20694660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway.
    Baird L; Yamamoto M
    Mol Cell Biol; 2020 Jun; 40(13):. PubMed ID: 32284348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases.
    Villeneuve NF; Lau A; Zhang DD
    Antioxid Redox Signal; 2010 Dec; 13(11):1699-712. PubMed ID: 20486766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TAK1 Regulates the Nrf2 Antioxidant System Through Modulating p62/SQSTM1.
    Hashimoto K; Simmons AN; Kajino-Sakamoto R; Tsuji Y; Ninomiya-Tsuji J
    Antioxid Redox Signal; 2016 Dec; 25(17):953-964. PubMed ID: 27245349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Prothyomosin alpha interaction with KEAP1 doesn't lead to prothymosin alpha ubiquination and degradation].
    Mel'nikov SV; Evstaf'eva AG; Vartapetian AB
    Mol Biol (Mosk); 2007; 41(5):868-75. PubMed ID: 18240569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CACUL1/CAC1 Regulates the Antioxidant Response by Stabilizing Nrf2.
    Kigoshi Y; Fukuda T; Endo T; Hayasaka N; Iemura S; Natsume T; Tsuruta F; Chiba T
    Sci Rep; 2015 Aug; 5():12857. PubMed ID: 26238671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes.
    Bhakkiyalakshmi E; Sireesh D; Rajaguru P; Paulmurugan R; Ramkumar KM
    Pharmacol Res; 2015 Jan; 91():104-14. PubMed ID: 25447793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells.
    Yang SP; Yang XZ; Cao GP
    Mol Med Rep; 2015 Jul; 12(1):1145-50. PubMed ID: 25776802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD; Lo SC; Sun Z; Habib GM; Lieberman MW; Hannink M
    J Biol Chem; 2005 Aug; 280(34):30091-9. PubMed ID: 15983046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Keap1 degradation by autophagy for the maintenance of redox homeostasis.
    Taguchi K; Fujikawa N; Komatsu M; Ishii T; Unno M; Akaike T; Motohashi H; Yamamoto M
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13561-6. PubMed ID: 22872865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex.
    Tao S; Liu P; Luo G; Rojo de la Vega M; Chen H; Wu T; Tillotson J; Chapman E; Zhang DD
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28115426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute expression of the transcription factor Nrf2 after treatment with quinolinic acid is not induced by oxidative stress in the rat striatum.
    Silva-Islas CA; Chánez-Cárdenas ME; Barrera-Oviedo D; Ibarra-Rubio ME; Maldonado PD
    Neurotoxicology; 2019 Jul; 73():120-131. PubMed ID: 30876764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.