These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 29913329)
1. Decoding the noncoding genome via large-scale CRISPR screens. Shukla A; Huangfu D Curr Opin Genet Dev; 2018 Oct; 52():70-76. PubMed ID: 29913329 [TBL] [Abstract][Full Text] [Related]
2. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Klann TS; Black JB; Chellappan M; Safi A; Song L; Hilton IB; Crawford GE; Reddy TE; Gersbach CA Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033 [TBL] [Abstract][Full Text] [Related]
4. Development and application of CRISPR/Cas9 technologies in genomic editing. Zhang C; Quan R; Wang J Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822 [TBL] [Abstract][Full Text] [Related]
5. Target Discovery for Precision Medicine Using High-Throughput Genome Engineering. Guo X; Chitale P; Sanjana NE Adv Exp Med Biol; 2017; 1016():123-145. PubMed ID: 29130157 [TBL] [Abstract][Full Text] [Related]
6. A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way? Taylor J; Woodcock S J Biomol Screen; 2015 Sep; 20(8):1040-51. PubMed ID: 26048892 [TBL] [Abstract][Full Text] [Related]
8. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells. Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances in Therapeutic Genome Editing in China. Yang Y; Wang Q; Li Q; Men K; He Z; Deng H; Ji W; Wei Y Hum Gene Ther; 2018 Feb; 29(2):136-145. PubMed ID: 29446996 [TBL] [Abstract][Full Text] [Related]
11. The epigenome editors: How tools such as CRISPR offer new details about epigenetics. Willyard C Nat Med; 2017 Aug; 23(8):900-903. PubMed ID: 28777784 [No Abstract] [Full Text] [Related]
12. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms. Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067 [TBL] [Abstract][Full Text] [Related]
13. CRISPR-Cas9 for medical genetic screens: applications and future perspectives. Xue HY; Ji LJ; Gao AM; Liu P; He JD; Lu XJ J Med Genet; 2016 Feb; 53(2):91-7. PubMed ID: 26673779 [TBL] [Abstract][Full Text] [Related]
14. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Zhu S; Li W; Liu J; Chen CH; Liao Q; Xu P; Xu H; Xiao T; Cao Z; Peng J; Yuan P; Brown M; Liu XS; Wei W Nat Biotechnol; 2016 Dec; 34(12):1279-1286. PubMed ID: 27798563 [TBL] [Abstract][Full Text] [Related]
15. The promise and challenge of therapeutic genome editing. Doudna JA Nature; 2020 Feb; 578(7794):229-236. PubMed ID: 32051598 [TBL] [Abstract][Full Text] [Related]
16. The Future of CRISPR Applications in the Lab, the Clinic and Society. Hough SH; Ajetunmobi A Adv Exp Med Biol; 2017; 1016():157-178. PubMed ID: 29130159 [TBL] [Abstract][Full Text] [Related]
17. Harnessing CRISPR-Cas systems for bacterial genome editing. Selle K; Barrangou R Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413 [TBL] [Abstract][Full Text] [Related]
18. High-throughput screens in mammalian cells using the CRISPR-Cas9 system. Peng J; Zhou Y; Zhu S; Wei W FEBS J; 2015 Jun; 282(11):2089-96. PubMed ID: 25731961 [TBL] [Abstract][Full Text] [Related]