BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29913386)

  • 21. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products.
    Kong X; Jiang J; Ma J; Yang Y; Liu W; Liu Y
    Water Res; 2016 Mar; 90():15-23. PubMed ID: 26724435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The roles of reactive species in micropollutant degradation in the UV/free chlorine system.
    Fang J; Fu Y; Shang C
    Environ Sci Technol; 2014; 48(3):1859-68. PubMed ID: 24400681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing a restricted chlorine-dosing strategy for UV/chlorine and post-chlorination under different pH and UV irradiation wavelength conditions.
    Cheng S; Wu J; Zuo YT; Han YZ; Ji WX; Li Y; Huo ZL; Li AM; Li WT
    Chemosphere; 2020 Nov; 258():127393. PubMed ID: 32947669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical behaviors and toxic effects of ametryn during the UV/chlorine process.
    Yang W; Tang Y; Liu L; Peng X; Zhong Y; Chen Y; Huang Y
    Chemosphere; 2020 Feb; 240():124941. PubMed ID: 31726615
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Making waves: Opportunities and challenges of applying far-UVC radiation in controlling micropollutants in water.
    Zhao J; Payne EM; Liu B; Shang C; Blatchley ER; Mitch WA; Yin R
    Water Res; 2023 Aug; 241():120169. PubMed ID: 37290191
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficiency of hydroxyl radical formation and phenol decomposition using UV light emitting diodes and H2O2.
    Vilhunen S; Puton J; Virkutyte J; Sillanpää M
    Environ Technol; 2011; 32(7-8):865-72. PubMed ID: 21879561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Full-scale comparison of UV/H
    Wang C; Moore N; Bircher K; Andrews S; Hofmann R
    Water Res; 2019 Sep; 161():448-458. PubMed ID: 31228664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prednisolone degradation by UV/chlorine process: Influence factors, transformation products and mechanism.
    Yin K; He Q; Liu C; Deng Y; Wei Y; Chen S; Liu T; Luo S
    Chemosphere; 2018 Dec; 212():56-66. PubMed ID: 30138856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse.
    Chuang YH; Chen S; Chinn CJ; Mitch WA
    Environ Sci Technol; 2017 Dec; 51(23):13859-13868. PubMed ID: 29121472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the UV/chlorine process as an advanced oxidation process.
    Jin J; El-Din MG; Bolton JR
    Water Res; 2011 Feb; 45(4):1890-6. PubMed ID: 21211812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of iopromide during the UV-LED/chlorine reaction: Effect of wavelength, radical contribution, transformation products, and toxicity.
    Cha Y; Kim TK; Lee J; Kim T; Hong AJ; Zoh KD
    J Hazard Mater; 2022 Sep; 437():129371. PubMed ID: 35717814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous removal of chlorite and contaminants of emerging concern under UV photolysis: Hydroxyl radicals vs. chlorate formation.
    Wang J; Wu Y; Bu L; Zhu S; Zhang W; Zhou S; Gao N
    Water Res; 2021 Feb; 190():116708. PubMed ID: 33279746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H2O2.
    Bahnmüller S; Loi CH; Linge KL; Gunten Uv; Canonica S
    Water Res; 2015 May; 74():143-54. PubMed ID: 25725202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H
    Gao YQ; Zhang J; Li C; Tian FX; Gao NY
    Chemosphere; 2020 Mar; 243():125325. PubMed ID: 31733542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation Investigation of Selected Taste and Odor Compounds by a UV/Chlorine Advanced Oxidation Process.
    Fang J; Liu J; Shang C; Fan C
    Int J Environ Res Public Health; 2018 Feb; 15(2):. PubMed ID: 29414884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel Visible Light-Driven Photocatalytic Chlorine Activation Process for Carbamazepine Degradation in Drinking Water.
    Cheng Z; Ling L; Wu Z; Fang J; Westerhoff P; Shang C
    Environ Sci Technol; 2020 Sep; 54(18):11584-11593. PubMed ID: 32794774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of hydroxyl radical and reactive chlorine species generation from the superoxide/hypochlorous acid reaction as the basis for a novel advanced oxidation process.
    Liou SY; Dodd MC
    Water Res; 2021 Jul; 200():117142. PubMed ID: 34052475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of methadone by the sunlight/FC process: Kinetics, radical species participation and influence of the water matrix.
    Hsieh MC; Panchangam SC; Lai WW; Lin AY
    Chemosphere; 2018 Oct; 209():104-112. PubMed ID: 29920408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the wavelength-dependent photolysis of chlorite: Elimination of carbamazepine and formation of chlorate.
    Wang J; Zhu S; Wu Y; Sheng D; Bu L; Zhou S
    Chemosphere; 2022 Feb; 288(Pt 1):132505. PubMed ID: 34627813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination.
    Aghdam E; Xiang Y; Sun J; Shang C; Yang X; Fang J
    J Environ Sci (China); 2017 Aug; 58():146-154. PubMed ID: 28774603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.