These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29913402)

  • 21. Enhanced solubilization and desorption of organochlorine pesticides (OCPs) from soil by oil-swollen micelles formed with a nonionic surfactant.
    Zheng G; Selvam A; Wong JW
    Environ Sci Technol; 2012 Nov; 46(21):12062-8. PubMed ID: 22998366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of pesticides with natural and synthetic solids. Evaluation in dynamic and equilibrium conditions.
    Otalvaro JO; Brigante M
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6707-6719. PubMed ID: 29260478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Partitioning of hydrophobic organic compounds within soil-water-surfactant systems.
    Wang P; Keller AA
    Water Res; 2008 Apr; 42(8-9):2093-101. PubMed ID: 18067946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmental Behavior of Chlorpyrifos and Endosulfan in a Tropical Soil in Central Brazil.
    Dores EF; Spadotto CA; Weber OL; Dalla Villa R; Vecchiato AB; Pinto AA
    J Agric Food Chem; 2016 May; 64(20):3942-8. PubMed ID: 26635198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field leaching of pesticides at five test sites in Hawaii: modeling flow and transport.
    Dusek J; Dohnal M; Vogel T; Ray C
    Pest Manag Sci; 2011 Dec; 67(12):1571-82. PubMed ID: 21681917
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of pesticide fate parameters and their uncertainty on the selection of 'worst-case' scenarios of pesticide leaching to groundwater.
    Vanderborght J; Tiktak A; Boesten JJ; Vereecken H
    Pest Manag Sci; 2011 Mar; 67(3):294-306. PubMed ID: 21308955
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fate and transport of monensin in the presence of nonionic surfactant Brij35 in soil.
    ElSayed EM; Prasher SO
    Sci Total Environ; 2014 Aug; 490():629-38. PubMed ID: 24887190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spreading of Oil Droplets Containing Surfactants and Pesticides on Water Surface Based on the Marangoni Effect.
    Liu J; Guo X; Xu Y; Wu X
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33807893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The partitioning and modelling of pesticide parathion in a surfactant-assisted soil-washing system.
    Chu W; Chan KH; Choy WK
    Chemosphere; 2006 Jul; 64(5):711-6. PubMed ID: 16403421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-farm management practices to minimise off-site movement of pesticides from furrow irrigation.
    Oliver DP; Kookana RS
    Pest Manag Sci; 2006 Oct; 62(10):899-911. PubMed ID: 16927394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: characterizing two-step adsorption and partition processes through experimental and modeling approaches.
    Zhao S; Huang G; An C; Wei J; Yao Y
    J Hazard Mater; 2015 Apr; 286():144-51. PubMed ID: 25576782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of selected cyclodextrins in sorption-desorption of chlorpyrifos, chlorothalonil, diazinon, and their main degradation products on different soils.
    Báez ME; Espinoza J; Silva R; Fuentes E
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):20908-20921. PubMed ID: 28721622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of the movement and persistence of pesticides in soil through common agronomic practices.
    Fenoll J; Ruiz E; Flores P; Hellín P; Navarro S
    Chemosphere; 2011 Nov; 85(8):1375-82. PubMed ID: 21872905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surfactant-enhanced desorption of atrazine and linuron residues as affected by aging of herbicides in soil.
    Rodriguez-Cruz MS; Sanchez-Martin MJ; Sanchez-Camazano M
    Arch Environ Contam Toxicol; 2006 Jan; 50(1):128-37. PubMed ID: 16237492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant.
    Zhou W; Zhu L
    Water Res; 2008 Jan; 42(1-2):101-8. PubMed ID: 17675132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of enhanced mobilisation of trace metals by anionic surfactants in soil.
    Hernández-Soriano Mdel C; Degryse F; Smolders E
    Environ Pollut; 2011 Mar; 159(3):809-16. PubMed ID: 21163562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1.
    Zhang D; Zhu L
    Environ Pollut; 2012 May; 164():169-74. PubMed ID: 22361056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What happens when pesticides are solubilized in nonionic surfactant micelles.
    Hu X; Gong H; Li Z; Ruane S; Liu H; Pambou E; Bawn C; King S; Ma K; Li P; Padia F; Bell G; Lu JR
    J Colloid Interface Sci; 2019 Apr; 541():175-182. PubMed ID: 30685612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Desorption of selected PAHs as individuals and as a ternary PAH mixture within a water-soil-nonionic surfactant system.
    Hussein TA; Ismail ZZ
    Environ Technol; 2013; 34(1-4):351-61. PubMed ID: 23530349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils.
    Kjær J; Ernsten V; Jacobsen OH; Hansen N; de Jonge LW; Olsen P
    Chemosphere; 2011 Jul; 84(4):471-9. PubMed ID: 21481435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.