BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 29913421)

  • 1. Synthesis of modified proteins via functionalization of dehydroalanine.
    Dadová J; Galan SR; Davis BG
    Curr Opin Chem Biol; 2018 Oct; 46():71-81. PubMed ID: 29913421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-Specific Conversion of Cysteine in a Protein to Dehydroalanine Using 2-Nitro-5-thiocyanatobenzoic Acid.
    Qiao Y; Yu G; Leeuwon SZ; Liu WR
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33947165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native chemical ligation in protein synthesis and semi-synthesis.
    Conibear AC; Watson EE; Payne RJ; Becker CFW
    Chem Soc Rev; 2018 Dec; 47(24):9046-9068. PubMed ID: 30418441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and semisynthesis of posttranslationally modified proteins.
    Siman P; Brik A
    Org Biomol Chem; 2012 Aug; 10(30):5684-97. PubMed ID: 22527305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-driven post-translational installation of reactive protein side chains.
    Josephson B; Fehl C; Isenegger PG; Nadal S; Wright TH; Poh AWJ; Bower BJ; Giltrap AM; Chen L; Batchelor-McAuley C; Roper G; Arisa O; Sap JBI; Kawamura A; Baldwin AJ; Mohammed S; Compton RG; Gouverneur V; Davis BG
    Nature; 2020 Sep; 585(7826):530-537. PubMed ID: 32968259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Recent Progresses in Chemical Synthesis of Proteins with Site-Specific Lysine Post-translational Modifications.
    Wang ZA
    Curr Org Synth; 2019; 16(3):369-384. PubMed ID: 31984899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins.
    Bernardes GJ; Chalker JM; Errey JC; Davis BG
    J Am Chem Soc; 2008 Apr; 130(15):5052-3. PubMed ID: 18357986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity.
    Wright TH; Bower BJ; Chalker JM; Bernardes GJ; Wiewiora R; Ng WL; Raj R; Faulkner S; Vallée MR; Phanumartwiwath A; Coleman OD; Thézénas ML; Khan M; Galan SR; Lercher L; Schombs MW; Gerstberger S; Palm-Espling ME; Baldwin AJ; Kessler BM; Claridge TD; Mohammed S; Davis BG
    Science; 2016 Nov; 354(6312):. PubMed ID: 27708059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient synthetic methods for α,β-dehydroamino acids as useful and environmentally benign building blocks in biological and materials science.
    Mori T; Sumida S; Sakata K; Shirakawa S
    Org Biomol Chem; 2024 Jun; 22(23):4625-4636. PubMed ID: 38804977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational site-selective protein backbone α-deuteration.
    Galan SRG; Wickens JR; Dadova J; Ng WL; Zhang X; Simion RA; Quinlan R; Pires E; Paton RS; Caddick S; Chudasama V; Davis BG
    Nat Chem Biol; 2018 Oct; 14(10):955-963. PubMed ID: 30224694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New methods for chemical protein synthesis.
    Guan X; Chaffey PK; Zeng C; Tan Z
    Top Curr Chem; 2015; 363():155-92. PubMed ID: 25707614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress in the chemical synthesis of proteins.
    Hojo H
    Curr Opin Struct Biol; 2014 Jun; 26():16-23. PubMed ID: 24681507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical mutagenesis: selective post-expression interconversion of protein amino acid residues.
    Chalker JM; Davis BG
    Curr Opin Chem Biol; 2010 Dec; 14(6):781-9. PubMed ID: 21075673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein chemical synthesis by α-ketoacid-hydroxylamine ligation.
    Harmand TJ; Murar CE; Bode JW
    Nat Protoc; 2016 Jun; 11(6):1130-47. PubMed ID: 27227514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Lipidated Proteins.
    Mejuch T; Waldmann H
    Bioconjug Chem; 2016 Aug; 27(8):1771-83. PubMed ID: 27444727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in Lanthionine and Protected Lanthionine Synthesis.
    Denoël T; Lemaire C; Luxen A
    Chemistry; 2018 Oct; 24(58):15421-15441. PubMed ID: 29714402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile chemoselective synthesis of dehydroalanine-containing peptides.
    Okeley NM; Zhu Y; van Der Donk WA
    Org Lett; 2000 Nov; 2(23):3603-6. PubMed ID: 11073655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dehydroalanine-based diubiquitin activity probes.
    Haj-Yahya N; Hemantha HP; Meledin R; Bondalapati S; Seenaiah M; Brik A
    Org Lett; 2014 Jan; 16(2):540-3. PubMed ID: 24364494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-translational Introduction of D-Alanine into Ribosomally Synthesized Peptides by the Dehydroalanine Reductase NpnJ.
    Yang X; van der Donk WA
    J Am Chem Soc; 2015 Oct; 137(39):12426-9. PubMed ID: 26361061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications.
    Chalker JM; Lercher L; Rose NR; Schofield CJ; Davis BG
    Angew Chem Int Ed Engl; 2012 Feb; 51(8):1835-9. PubMed ID: 22247073
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.