These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 29913480)
1. Dendrimer-paclitaxel complexes for efficient treatment in ovarian cancer: study on OVCAR-3 and HEK293T cells. Yao H; Ma J Acta Biochim Pol; 2018; 65(2):219-225. PubMed ID: 29913480 [TBL] [Abstract][Full Text] [Related]
2. Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitro. Yellepeddi VK; Kumar A; Palakurthi S Anticancer Res; 2009 Aug; 29(8):2933-43. PubMed ID: 19661298 [TBL] [Abstract][Full Text] [Related]
3. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs. Uram Ł; Szuster M; Filipowicz A; Zaręba M; Wałajtys-Rode E; Wołowiec S Bioorg Med Chem; 2017 Jan; 25(2):706-713. PubMed ID: 27919613 [TBL] [Abstract][Full Text] [Related]
4. Octa-arginine modified poly(amidoamine) dendrimers for improved delivery and cytotoxic effect of paclitaxel in cancer. Rompicharla SVK; Kumari P; Ghosh B; Biswas S Artif Cells Nanomed Biotechnol; 2018; 46(sup2):847-859. PubMed ID: 29790795 [TBL] [Abstract][Full Text] [Related]
5. Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines. Uram Ł; Filipowicz A; Misiorek M; Pieńkowska N; Markowicz J; Wałajtys-Rode E; Wołowiec S Eur J Pharm Sci; 2018 Nov; 124():1-9. PubMed ID: 30118847 [TBL] [Abstract][Full Text] [Related]
6. Multicomponent Conjugates of Anticancer Drugs and Monoclonal Antibody with PAMAM Dendrimers to Increase Efficacy of HER-2 Positive Breast Cancer Therapy. Marcinkowska M; Stanczyk M; Janaszewska A; Sobierajska E; Chworos A; Klajnert-Maculewicz B Pharm Res; 2019 Sep; 36(11):154. PubMed ID: 31482205 [TBL] [Abstract][Full Text] [Related]
7. Lipid-dendrimer hybrid nanosystem as a novel delivery system for paclitaxel to treat ovarian cancer. Liu Y; Ng Y; Toh MR; Chiu GNC J Control Release; 2015 Dec; 220(Pt A):438-446. PubMed ID: 26551345 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. Oddone N; Lecot N; Fernández M; Rodriguez-Haralambides A; Cabral P; Cerecetto H; Benech JC J Nanobiotechnology; 2016 Jun; 14(1):45. PubMed ID: 27297021 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of anionic half generation 3.5-6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. Kirkpatrick GJ; Plumb JA; Sutcliffe OB; Flint DJ; Wheate NJ J Inorg Biochem; 2011 Sep; 105(9):1115-22. PubMed ID: 21704583 [TBL] [Abstract][Full Text] [Related]
10. In vitro &in vivo targeting behaviors of biotinylated Pluronic F127/poly(lactic acid) nanoparticles through biotin-avidin interaction. Xiong XY; Guo L; Gong YC; Li ZL; Li YP; Liu ZY; Zhou M Eur J Pharm Sci; 2012 Aug; 46(5):537-44. PubMed ID: 22538053 [TBL] [Abstract][Full Text] [Related]
11. The Importance of Biotinylation for the Suitability of Cationic and Neutral Fourth-Generation Polyamidoamine Dendrimers as Targeted Drug Carriers in the Therapy of Glioma and Liver Cancer. Uram Ł; Twardowska M; Szymaszek Ż; Misiorek M; Łyskowski A; Setkowicz Z; Rauk Z; Wołowiec S Molecules; 2024 Sep; 29(18):. PubMed ID: 39339289 [TBL] [Abstract][Full Text] [Related]
12. Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery. Gu Z; Wang M; Fang Q; Zheng H; Wu F; Lin D; Xu Y; Jin Y Drug Dev Ind Pharm; 2015 May; 41(5):812-8. PubMed ID: 24745851 [TBL] [Abstract][Full Text] [Related]
13. Analysis of biotinylated generation 4 poly(amidoamine) (PAMAM) dendrimer distribution in the rat brain and toxicity in a cellular model of the blood-brain barrier. Hemmer R; Hall A; Spaulding R; Rossow B; Hester M; Caroway M; Haskamp A; Wall S; Bullen HA; Morris C; Haik KL Molecules; 2013 Sep; 18(9):11537-52. PubMed ID: 24048286 [TBL] [Abstract][Full Text] [Related]
14. Functionalized nanospheres for targeted delivery of paclitaxel. Bushman J; Vaughan A; Sheihet L; Zhang Z; Costache M; Kohn J J Control Release; 2013 Nov; 171(3):315-21. PubMed ID: 23792807 [TBL] [Abstract][Full Text] [Related]
15. Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations. Chaudhary S; Gothwal A; Khan I; Srivastava S; Malik R; Gupta U Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():611-619. PubMed ID: 28024628 [TBL] [Abstract][Full Text] [Related]
16. Long-circulating self-assembled cholesteryl albumin nanoparticles enhance tumor accumulation of hydrophobic anticancer drug. Battogtokh G; Kang JH; Ko YT Eur J Pharm Biopharm; 2015 Oct; 96():96-105. PubMed ID: 26212785 [TBL] [Abstract][Full Text] [Related]
17. Grafting, characterization and enhancement of therapeutic activity of berberine loaded PEGylated PAMAM dendrimer for cancerous cell. Yadav D; Semwal BC; Dewangan HK J Biomater Sci Polym Ed; 2023 Jun; 34(8):1053-1066. PubMed ID: 36469754 [TBL] [Abstract][Full Text] [Related]
18. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier. Teow HM; Zhou Z; Najlah M; Yusof SR; Abbott NJ; D'Emanuele A Int J Pharm; 2013 Jan; 441(1-2):701-11. PubMed ID: 23089576 [TBL] [Abstract][Full Text] [Related]
19. Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Khandare JJ; Jayant S; Singh A; Chandna P; Wang Y; Vorsa N; Minko T Bioconjug Chem; 2006; 17(6):1464-72. PubMed ID: 17105225 [TBL] [Abstract][Full Text] [Related]
20. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals. Sohn JS; Yoon DS; Sohn JY; Park JS; Choi JS Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():228-237. PubMed ID: 28024581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]