These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29913588)

  • 21. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the influence of climate change on the embodied energy of water supply.
    Mo W; Wang H; Jacobs JM
    Water Res; 2016 May; 95():220-9. PubMed ID: 27010784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach.
    Blanco-Gutiérrez I; Varela-Ortega C; Purkey DR
    J Environ Manage; 2013 Oct; 128():144-60. PubMed ID: 23732193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the water, energy, food and land nexus using the system archetypes: A case study in the Jatiluhur reservoir, West Java, Indonesia.
    Bahri M
    Sci Total Environ; 2020 May; 716():137025. PubMed ID: 32074938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A decision-making framework for the optimal design of renewable energy systems under energy-water-land nexus considerations.
    Cook J; Di Martino M; Allen RC; Pistikopoulos EN; Avraamidou S
    Sci Total Environ; 2022 Jun; 827():154185. PubMed ID: 35245547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ANEMI3: An updated tool for global change analysis.
    Breach PA; Simonovic SP
    PLoS One; 2021; 16(5):e0251489. PubMed ID: 33970952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability.
    Mehran A; AghaKouchak A; Nakhjiri N; Stewardson MJ; Peel MC; Phillips TJ; Wada Y; Ravalico JK
    Sci Rep; 2017 Jul; 7(1):6282. PubMed ID: 28740168
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards understanding the integrative approach of the water, energy and food nexus.
    Al-Saidi M; Elagib NA
    Sci Total Environ; 2017 Jan; 574():1131-1139. PubMed ID: 27710905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying Direct and Indirect Spatial Food-Energy-Water (FEW) Nexus in China.
    Liang Y; Li Y; Liang S; Feng C; Xu L; Qi J; Yang X; Wang Y; Zhang C; Li K; Li H; Yang Z
    Environ Sci Technol; 2020 Aug; 54(16):9791-9803. PubMed ID: 32677825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimum flows and levels method of the St. Johns River Water Management District, Florida, USA.
    Neubauer CP; Hall GB; Lowe EF; Robison CP; Hupalo RB; Keenan LW
    Environ Manage; 2008 Dec; 42(6):1101-14. PubMed ID: 18802732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of climate change and water use policies on hydropower potential in the south-eastern Alpine region.
    Majone B; Villa F; Deidda R; Bellin A
    Sci Total Environ; 2016 Feb; 543(Pt B):965-80. PubMed ID: 25980972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-term climate sensitivity of an integrated water supply system: The role of irrigation.
    Guyennon N; Romano E; Portoghese I
    Sci Total Environ; 2016 Sep; 565():68-81. PubMed ID: 27161129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantification of the urban water-energy nexus in México City, México, with an assessment of water-system related carbon emissions.
    Valek AM; Sušnik J; Grafakos S
    Sci Total Environ; 2017 Jul; 590-591():258-268. PubMed ID: 28262366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resilience analysis of the nexus across water supply, power generation and environmental systems from a stochastic perspective.
    An R; Liu P; Feng M; Cheng L; Yao M; Wang Y; Li X
    J Environ Manage; 2021 Jul; 289():112513. PubMed ID: 33823416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Pivotal Role of Phosphorus in a Resilient Water-Energy-Food Security Nexus.
    Jarvie HP; Sharpley AN; Flaten D; Kleinman PJ; Jenkins A; Simmons T
    J Environ Qual; 2015 Jul; 44(4):1049-62. PubMed ID: 26437086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life cycle assessment of forecasting scenarios for urban water management: A first implementation of the WaLA model on Paris suburban area.
    Loubet P; Roux P; Guérin-Schneider L; Bellon-Maurel V
    Water Res; 2016 Mar; 90():128-140. PubMed ID: 26724447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating options for balancing the water-electricity nexus in California: Part 2--greenhouse gas and renewable energy utilization impacts.
    Tarroja B; AghaKouchak A; Sobhani R; Feldman D; Jiang S; Samuelsen S
    Sci Total Environ; 2014 Nov; 497-498():711-724. PubMed ID: 25087186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dataset on sensitivity of water-energy nexus to Dez Dam power plant operation.
    Zallaghi E; Akhoond-Ali AM; Ashrafi SM
    Data Brief; 2020 Jun; 30():105454. PubMed ID: 32300620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach.
    Luo Y; Ficklin DL; Liu X; Zhang M
    Sci Total Environ; 2013 Apr; 450-451():72-82. PubMed ID: 23467178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes.
    Uen TS; Chang FJ; Zhou Y; Tsai WP
    Sci Total Environ; 2018 Aug; 633():341-351. PubMed ID: 29574378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.