These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29914047)

  • 1. Properties and Structure of In Situ Transformed PAN-Based Carbon Fibers.
    Cao J; Zhao W; Gao S
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914047
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Chen HH; Cao JJ; Hong HP; Zheng N; Ren J; Wang CA
    J Nanosci Nanotechnol; 2021 Oct; 21(10):5235-5240. PubMed ID: 33875112
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of Different Pressures of Supercritical Carbon Dioxide on the Microstructure of PAN Fibers during the Hot-Drawing Process.
    Qiao M; Kong H; Ding X; Hu Z; Zhang L; Cao Y; Yu M
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure of Milled Polyacrylonitrile-Based Carbon Fiber Analyzed by Micro-Raman Spectroscopy and TEM.
    Lee SH; Lee SM; Roh JS
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Polyacrylonitrile Precursor Orientation on the Structures and Properties of Thermally Stabilized Carbon Fiber.
    Wang B; Li C; Cao W
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34208372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Different Nanocellulose Additives on Processing and Performance of PAN-Based Carbon Fibers.
    Jiang E; Maghe M; Zohdi N; Amiralian N; Naebe M; Laycock B; Fox BL; Martin DJ; Annamalai PK
    ACS Omega; 2019 Jun; 4(6):9720-9730. PubMed ID: 31460062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Structure and Properties of Polyacrylonitrile Nascent Composite Fibers with Grafted Multi Walled Carbon Nanotubes Prepared by Wet Spinning Method.
    Zhang H; Quan L; Gao A; Tong Y; Shi F; Xu L
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular modeling of the microstructure evolution during carbon fiber processing.
    Desai S; Li C; Shen T; Strachan A
    J Chem Phys; 2017 Dec; 147(22):224705. PubMed ID: 29246038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Temperature on the Complex Modulus of Mg-Based Unidirectionally Aligned Carbon Fiber Composites.
    Kúdela S; Koráb J; Štefánik P
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a three-dimensional micro/nanocarbon structure with sub-10 nm carbon fiber arrays based on the nanoforming and pyrolysis of polyacrylonitrile-based jet fibers.
    Deng J; Liu C; Song D; Madou M
    Microsyst Nanoeng; 2023; 9():132. PubMed ID: 37854723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and Regulation of Radial Structure of PAN Pre-Oxidized Fiber Based on the Fine Denier Model.
    Wang B; Wang Y; Li C; Gao A
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Study of Polyacrylonitrile-Based Carbon Nanofibers for Understanding Gas Adsorption.
    Park J; Kretzschmar A; Selmert V; Camara O; Kungl H; Tempel H; Basak S; Eichel RA
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46665-46670. PubMed ID: 34546700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Raman spectra of PAN-based carbon fibers during surface treatment].
    Cao WW; Zhu B; Jing M; Wang CG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2885-9. PubMed ID: 19248506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Microstructure of High-Surface-Area Polyacrylonitrile Activated Carbon Fibers.
    Lu AH; Zheng JT
    J Colloid Interface Sci; 2001 Apr; 236(2):369-374. PubMed ID: 11401385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter.
    Gissinger JR; Pramanik C; Newcomb B; Kumar S; Heinz H
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1017-1027. PubMed ID: 29231715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers.
    Martin HJ; Luo H; Chen H; Do-Thanh CL; Kearney LT; Mayes R; Naskar AK; Dai S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8663-8673. PubMed ID: 31977177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser induced graphitization of PAN-based carbon fibers.
    Sha Y; Yang W; Li S; Yao L; Li H; Cheng L; Yan H; Cao W; Tan J
    RSC Adv; 2018 Mar; 8(21):11543-11550. PubMed ID: 35542777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of γ-Ray Irradiation on the Radial Structure Heterogeneity in Polyacrylonitrile Fibers during Thermal Stabilization.
    Dang W; Liu J; Huang X; Liang J; Wang C; Miao P; An Y; Wang X
    Polymers (Basel); 2018 Aug; 10(9):. PubMed ID: 30960867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation Mechanism of Skin-Core Chemical Structure within Stabilized Polyacrylonitrile Monofilaments.
    Sha Y; Liu W; Li Y; Cao W
    Nanoscale Res Lett; 2019 Mar; 14(1):93. PubMed ID: 30868411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and Continuous Preparation of Polyacrylonitrile-Based Carbon Fibers with Electron-Beam Irradiation Pretreatment.
    Yang J; Liu Y; Liu J; Shen Z; Liang J; Wang X
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30042351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.