These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29914121)

  • 1. Effects of Annealing on the Residual Stress in γ-TiAl Alloy by Molecular Dynamics Simulation.
    Feng R; Song W; Li H; Qi Y; Qiao H; Li L
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulation on Creep Behavior of Nanocrystalline TiAl Alloy.
    Zhao F; Zhang J; He C; Zhang Y; Gao X; Xie L
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32872153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanism of Cold Deformation of Two-Phase Polycrystalline Ti⁻Al Alloy with Void.
    Feng R; Wang M; Li H; Qi Y; Wang Q; Rui Z
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Recrystallization of the Constituent γ Phase and Mechanical Properties of Ti-43Al-9V-0.2Y Alloy Sheet.
    Zhang Y; Wang X; Kong F; Chen Y
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28914797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot Deformation Behavior and Microstructural Evolution of PM Ti43Al9V0.3Y with Fine Equiaxed γ and B2 Grain Microstructure.
    Zhang D; Chen Y; Zhang G; Liu N; Kong F; Tian J; Sun J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32079325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Residual Stress around Constituent Particles on Recrystallization and Grain Growth in Al-Mn-Based Alloy during Annealing.
    Park SJ; Muraishi S
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33808346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effects of Hot-Pack Coating Materials on the Pack Rolling Process and Microstructural Characteristics during Ti-46Al-8Nb Sheet Fabrication.
    Huang H; Liao M; Yu Q; Liu G; Wang Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation and Phase Transformation of Disordered α Phase in the (α + γ) Two-Phase Region of a High-Nb TiAl Alloy.
    Zhou H; Kong F; Wang Y; Hou X; Cui N; Sun J
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure Evolution of the Ti-46Al-8Nb-2.5V Alloy during Hot Compression and Subsequent Annealing at 900 °C.
    Cao S; Li Z; Pu J; Han J; Dong Q; Zhu M
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grain Refinement by Second Phase Particles under Applied Stress in ZK60 Mg Alloy with Y through Phase Field Simulation.
    Song Y; Wang M; Zong Y; He R; Jin J
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30301255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grain Refinement of a Powder Nickel-Base Superalloy Using Hot Deformation and Slow-Cooling.
    Fan X; Guo Z; Wang X; Yang J; Zou J
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot Deformation Behavior and Microstructural Evolution of a Novel β-Solidifying Ti-43Al-3Mn-2Nb-0.1Y Alloy.
    Wu Q; Cui N; Xiao X; Wang X; Zhao E
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31284560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot Deformation Behavior of a Ti-40Al-10V Alloy with Quenching-Tempering Microstructure.
    Cheng L; Chen Y; Yang G; Xie L; Wang J; Lu Y; Kou H
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29882871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of Grain Boundary Character Distribution in B10 Alloy from Friction Stir Processing to Annealing Treatment.
    Feng W; Zhou J; Wang S; Sun T; Zhao T; Jiang Y
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Heat Treatment on Microstructures and Mechanical Properties of a Novel β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Bi K; Xu T; Kong F
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31126013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects and mechanism of ultrasonic irradiation on solidification microstructure and mechanical properties of binary TiAl alloys.
    Chen R; Zheng D; Ma T; Ding H; Su Y; Guo J; Fu H
    Ultrason Sonochem; 2017 Sep; 38():120-133. PubMed ID: 28633811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friction Weldability of a High Nb Containing TiAl Alloy.
    Xu X; Lin J; Guo J; Liang Y
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Multi-Directional Forging on the Microstructure and Mechanical Properties of β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Bi K; Wang J; Xu T; Kong F
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural Evolution and Refinement Mechanism of a Beta-Gamma TiAl-Based Alloy during Multidirectional Isothermal Forging.
    Zhu K; Qu S; Feng A; Sun J; Shen J
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31390789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy.
    Gong X; Duan Z; Pei W; Chen H
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28925971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.