BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29914565)

  • 1. Oxidative stress-induced chromosome breaks within the ABL gene: a model for chromosome rearrangement in nasopharyngeal carcinoma.
    Tan SN; Sim SP; Khoo AS
    Hum Genomics; 2018 Jun; 12(1):29. PubMed ID: 29914565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix association region/scaffold attachment region (MAR/SAR) sequence: its vital role in mediating chromosome breakages in nasopharyngeal epithelial cells via oxidative stress-induced apoptosis.
    Tan SN; Sim SP; Khoo ASB
    BMC Mol Biol; 2018 Dec; 19(1):15. PubMed ID: 30514321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix association region/scaffold attachment region: the crucial player in defining the positions of chromosome breaks mediated by bile acid-induced apoptosis in nasopharyngeal epithelial cells.
    Tan SN; Sim SP
    BMC Med Genomics; 2019 Jan; 12(1):9. PubMed ID: 30646906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential role of oxidative stress-induced apoptosis in mediating chromosomal rearrangements in nasopharyngeal carcinoma.
    Tan SN; Sim SP; Khoo AS
    Cell Biosci; 2016; 6():35. PubMed ID: 27231526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High cell density and latent membrane protein 1 expression induce cleavage of the mixed lineage leukemia gene at 11q23 in nasopharyngeal carcinoma cell line.
    Yee PH; Sim SP
    J Biomed Sci; 2010 Sep; 17(1):77. PubMed ID: 20858288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bile acids at neutral and acidic pH induce apoptosis and gene cleavages in nasopharyngeal epithelial cells: implications in chromosome rearrangement.
    Tan SN; Sim SP
    BMC Cancer; 2018 Apr; 18(1):409. PubMed ID: 29649994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitor of caspase-activated DNase expression enhances caspase-activated DNase expression and inhibits oxidative stress-induced chromosome breaks at the mixed lineage leukaemia gene in nasopharyngeal carcinoma cells.
    Boon SS; Sim SP
    Cancer Cell Int; 2015; 15():54. PubMed ID: 26019688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin structural elements and chromosomal translocations in leukemia.
    Zhang Y; Rowley JD
    DNA Repair (Amst); 2006 Sep; 5(9-10):1282-97. PubMed ID: 16893685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apoptotic triggers initiate translocations within the MLL gene involving the nonhomologous end joining repair system.
    Betti CJ; Villalobos MJ; Diaz MO; Vaughan AT
    Cancer Res; 2001 Jun; 61(11):4550-5. PubMed ID: 11389089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common chromatin structures at breakpoint cluster regions may lead to chromosomal translocations found in chronic and acute leukemias.
    Strick R; Zhang Y; Emmanuel N; Strissel PL
    Hum Genet; 2006 Jun; 119(5):479-95. PubMed ID: 16572268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IgH class switching and translocations use a robust non-classical end-joining pathway.
    Yan CT; Boboila C; Souza EK; Franco S; Hickernell TR; Murphy M; Gumaste S; Geyer M; Zarrin AA; Manis JP; Rajewsky K; Alt FW
    Nature; 2007 Sep; 449(7161):478-82. PubMed ID: 17713479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of oncogenic rearrangements: differences between chromosomal translocation mechanisms and simple double-strand break repair.
    Weinstock DM; Elliott B; Jasin M
    Blood; 2006 Jan; 107(2):777-80. PubMed ID: 16195334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marked contribution of alternative end-joining to chromosome-translocation-formation by stochastically induced DNA double-strand-breaks in G2-phase human cells.
    Soni A; Siemann M; Pantelias GE; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Nov; 793():2-8. PubMed ID: 26520366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct mechanisms of nonhomologous end joining in the repair of site-directed chromosomal breaks with noncomplementary and complementary ends.
    Willers H; Husson J; Lee LW; Hubbe P; Gazemeier F; Powell SN; Dahm-Daphi J
    Radiat Res; 2006 Oct; 166(4):567-74. PubMed ID: 17007549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XIAP Limits Autophagic Degradation of Sox2 and Is A Therapeutic Target in Nasopharyngeal Carcinoma Stem Cells.
    Ji J; Yu Y; Li ZL; Chen MY; Deng R; Huang X; Wang GF; Zhang MX; Yang Q; Ravichandran S; Feng GK; Xu XL; Yang CL; Qiu MZ; Jiao L; Yang D; Zhu XF
    Theranostics; 2018; 8(6):1494-1510. PubMed ID: 29556337
    [No Abstract]   [Full Text] [Related]  

  • 17. USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma.
    Chen Y; Zhao Y; Yang X; Ren X; Huang S; Gong S; Tan X; Li J; He S; Li Y; Hong X; Li Q; Ding C; Fang X; Ma J; Liu N
    Nat Commun; 2022 Jan; 13(1):501. PubMed ID: 35079021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microhomology directs diverse DNA break repair pathways and chromosomal translocations.
    Villarreal DD; Lee K; Deem A; Shim EY; Malkova A; Lee SE
    PLoS Genet; 2012; 8(11):e1003026. PubMed ID: 23144625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome fragile sites in Arabidopsis harbor matrix attachment regions that may be associated with ancestral chromosome rearrangement events.
    dela Paz JS; Stronghill PE; Douglas SJ; Saravia S; Hasenkampf CA; Riggs CD
    PLoS Genet; 2012; 8(12):e1003136. PubMed ID: 23284301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining.
    Bergs JW; Krawczyk PM; Borovski T; ten Cate R; Rodermond HM; Stap J; Medema JP; Haveman J; Essers J; van Bree C; Stalpers LJ; Kanaar R; Aten JA; Franken NA
    DNA Repair (Amst); 2013 Jan; 12(1):38-45. PubMed ID: 23237939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.