These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 2991472)
1. Separation of enzymically active bovine cytochrome c oxidase monomers and dimers by high performance liquid chromatography. Hakvoort TB; Sinjorgo KM; Van Gelder BF; Muijsers AO J Inorg Biochem; 1985; 23(3-4):381-8. PubMed ID: 2991472 [TBL] [Abstract][Full Text] [Related]
2. Separation, stability and kinetics of monomeric and dimeric bovine heart cytochrome c oxidase. Hakvoort TB; Moolenaar K; Lankvelt AH; Sinjorgo KM; Dekker HL; Muijsers AO Biochim Biophys Acta; 1987 Dec; 894(3):347-54. PubMed ID: 2825776 [TBL] [Abstract][Full Text] [Related]
3. The interconversion between monomeric and dimeric bovine heart cytochrome c oxidase. Bolli R; Nałecz KA; Azzi A Biochimie; 1985 Jan; 67(1):119-28. PubMed ID: 2986725 [TBL] [Abstract][Full Text] [Related]
4. The aggregation state of bovine heart cytochrome c oxidase and its kinetics in monomeric and dimeric form. Bolli R; Nałecz KA; Azzi A Arch Biochem Biophys; 1985 Jul; 240(1):102-16. PubMed ID: 2990338 [TBL] [Abstract][Full Text] [Related]
5. Preparation of monomeric cytochrome C oxidase: its kinetics differ from those of the dimeric enzyme. Nałecz KA; Bolli R; Azzi A Biochem Biophys Res Commun; 1983 Jul; 114(2):822-8. PubMed ID: 6309180 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of cytochrome c by cytochrome c oxidase: spectroscopic binding studies and steady-state kinetics support a conformational transition mechanism. Michel B; Bosshard HR Biochemistry; 1989 Jan; 28(1):244-52. PubMed ID: 2539857 [TBL] [Abstract][Full Text] [Related]
7. Isoforms of human cytochrome-c oxidase. Subunit composition and steady-state kinetic properties. Van Kuilenburg AB; Dekker HL; Van den Bogert C; Nieboer P; Van Gelder BF; Muijsers AO Eur J Biochem; 1991 Aug; 199(3):615-22. PubMed ID: 1651240 [TBL] [Abstract][Full Text] [Related]
8. Bovine cytochrome c oxidases, purified from heart, skeletal muscle, liver and kidney, differ in the small subunits but show the same reaction kinetics with cytochrome c. Sinjorgo KM; Durak I; Dekker HL; Edel CM; Hakvoort TB; van Gelder BF; Muijsers AO Biochim Biophys Acta; 1987 Sep; 893(2):251-8. PubMed ID: 3040092 [TBL] [Abstract][Full Text] [Related]
9. Reduction and activity of cytochrome c in the cytochrome c-cytochrome aa3 complex. Hill BC; Nicholls P Biochem J; 1980 Jun; 187(3):809-18. PubMed ID: 6331386 [TBL] [Abstract][Full Text] [Related]
10. Functional equivalence of monomeric (shark) and dimeric (bovine) cytochrome c oxidase. Bickar D; Lehninger A; Brunori M; Bonaventura J; Bonaventura C J Inorg Biochem; 1985; 23(3-4):365-72. PubMed ID: 2410569 [TBL] [Abstract][Full Text] [Related]
11. Presteady-state and steady-state kinetic properties of human cytochrome c oxidase. Identification of rate-limiting steps in mammalian cytochrome c oxidase. Van Kuilenburg AB; Gorren AC; Dekker HL; Nieboer P; Van Gelder BF; Muijsers AO Eur J Biochem; 1992 May; 205(3):1145-54. PubMed ID: 1315683 [TBL] [Abstract][Full Text] [Related]
12. The concept of high- and low-affinity reactions in bovine cytochrome c oxidase steady-state kinetics. Sinjorgo KM; Meijling JH; Muijsers AO Biochim Biophys Acta; 1984 Oct; 767(1):48-56. PubMed ID: 6091751 [TBL] [Abstract][Full Text] [Related]
13. Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. Yu C; Yu L; King TE J Biol Chem; 1975 Feb; 250(4):1383-92. PubMed ID: 163252 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of the interaction of the cytochrome c oxidase of Paracoccus denitrificans with its own and bovine cytochrome c. Bolgiano B; Smith L; Davies HC Biochim Biophys Acta; 1988 Apr; 933(2):341-50. PubMed ID: 2833305 [TBL] [Abstract][Full Text] [Related]
15. Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase. Hazzard JT; Rong SY; Tollin G Biochemistry; 1991 Jan; 30(1):213-22. PubMed ID: 1846288 [TBL] [Abstract][Full Text] [Related]
16. Reaction of thionitrobenzoate-modified yeast cytochrome c with monomeric and dimeric forms of beef heart cytochrome c oxidase. Darley-Usmar VM; Georgevich G; Capaldi RA FEBS Lett; 1984 Jan; 166(1):131-5. PubMed ID: 6319188 [TBL] [Abstract][Full Text] [Related]
18. The role of subunit III in bovine cytochrome c oxidase. Comparison between native, subunit III-depleted and Paracoccus denitrificans enzymes. Nałeçz KA; Bolli R; Ludwig B; Azzi A Biochim Biophys Acta; 1985 Jul; 808(2):259-72. PubMed ID: 2990554 [TBL] [Abstract][Full Text] [Related]
19. Kinetic evidence for the re-definition of electron transfer pathways from cytochrome c to O2 within cytochrome oxidase. Hill BC; Greenwood C FEBS Lett; 1984 Jan; 166(2):362-6. PubMed ID: 6319198 [TBL] [Abstract][Full Text] [Related]
20. An active cytochrome c oxidase depleted of subunit III prepared by covalent chromatography on yeast cytochrome c. Bill K; Azzi A Biochem Biophys Res Commun; 1982 Jun; 106(4):1203-9. PubMed ID: 6288042 [No Abstract] [Full Text] [Related] [Next] [New Search]