BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29915018)

  • 1. Suppression of Endothelial-to-Mesenchymal Transition by SIRT (Sirtuin) 3 Alleviated the Development of Hypertensive Renal Injury.
    Lin JR; Zheng YJ; Zhang ZB; Shen WL; Li XD; Wei T; Ruan CC; Chen XH; Zhu DL; Gao PJ
    Hypertension; 2018 Aug; 72(2):350-360. PubMed ID: 29915018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canagliflozin ameliorates epithelial-mesenchymal transition in high-salt diet-induced hypertensive renal injury through restoration of sirtuin 3 expression and the reduction of oxidative stress.
    Wang Z; Zhai J; Zhang T; He L; Ma S; Zuo Q; Zhang G; Wang Y; Guo Y
    Biochem Biophys Res Commun; 2023 Apr; 653():53-61. PubMed ID: 36857900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sirtuin 3 governs autophagy-dependent glycolysis during Angiotensin II-induced endothelial-to-mesenchymal transition.
    Gao J; Wei T; Huang C; Sun M; Shen W
    FASEB J; 2020 Dec; 34(12):16645-16661. PubMed ID: 33131100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sirtuin 3 is essential for hypertension-induced cardiac fibrosis via mediating pericyte transition.
    Su H; Zeng H; Liu B; Chen JX
    J Cell Mol Med; 2020 Jul; 24(14):8057-8068. PubMed ID: 32463172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells.
    Zhou X; Chen M; Zeng X; Yang J; Deng H; Yi L; Mi MT
    Cell Death Dis; 2014 Dec; 5(12):e1576. PubMed ID: 25522270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sirtuin 3 Deficiency Accelerates Hypertensive Cardiac Remodeling by Impairing Angiogenesis.
    Wei T; Huang G; Gao J; Huang C; Sun M; Wu J; Bu J; Shen W
    J Am Heart Assoc; 2017 Aug; 6(8):. PubMed ID: 28862956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Mitochondrial Oxidative Damage Improves Reendothelialization Capacity of Endothelial Progenitor Cells via SIRT3 (Sirtuin 3)-Enhanced SOD2 (Superoxide Dismutase 2) Deacetylation in Hypertension.
    He J; Liu X; Su C; Wu F; Sun J; Zhang J; Yang X; Zhang C; Zhou Z; Zhang X; Lin X; Tao J
    Arterioscler Thromb Vasc Biol; 2019 Aug; 39(8):1682-1698. PubMed ID: 31189433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirtuin 3 deficiency aggravates angiotensin II-induced hypertensive cardiac injury by the impairment of lymphangiogenesis.
    Zhang C; Li N; Suo M; Zhang C; Liu J; Liu L; Qi Y; Zheng X; Xie L; Hu Y; Bu P
    J Cell Mol Med; 2021 Aug; 25(16):7760-7771. PubMed ID: 34180125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension.
    Li N; Zhang J; Yan X; Zhang C; Liu H; Shan X; Li J; Yang Y; Huang C; Zhang P; Zhang Y; Bu P
    Oncotarget; 2017 Jun; 8(24):39592-39604. PubMed ID: 28465484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SIRT3 Deficiency Sensitizes Angiotensin-II-Induced Renal Fibrosis.
    Feng X; Su H; He X; Chen JX; Zeng H
    Cells; 2020 Nov; 9(11):. PubMed ID: 33233553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin-(1-7) attenuates angiotensin II-induced cardiac hypertrophy via a Sirt3-dependent mechanism.
    Guo L; Yin A; Zhang Q; Zhong T; O'Rourke ST; Sun C
    Am J Physiol Heart Circ Physiol; 2017 May; 312(5):H980-H991. PubMed ID: 28411231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STRESS-responsive deacetylase SIRT3 is up-regulated by areca nut extract-induced oxidative stress in human oral keratinocytes.
    Chen IC; Chiang WF; Chen PF; Chiang HC
    J Cell Biochem; 2014 Feb; 115(2):328-39. PubMed ID: 24339251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia.
    Rangarajan P; Karthikeyan A; Lu J; Ling EA; Dheen ST
    Neuroscience; 2015 Dec; 311():398-414. PubMed ID: 26523980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIRT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells.
    Xie L; Feng H; Li S; Meng G; Liu S; Tang X; Ma Y; Han Y; Xiao Y; Gu Y; Shao Y; Park CM; Xian M; Huang Y; Ferro A; Wang R; Moore PK; Wang H; Ji Y
    Antioxid Redox Signal; 2016 Feb; 24(6):329-43. PubMed ID: 26422756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Deacetylase Sirt3 Reduces Vascular Dysfunction and Hypertension While Sirt3 Depletion in Essential Hypertension Is Linked to Vascular Inflammation and Oxidative Stress.
    Dikalova AE; Pandey A; Xiao L; Arslanbaeva L; Sidorova T; Lopez MG; Billings FT; Verdin E; Auwerx J; Harrison DG; Dikalov SI
    Circ Res; 2020 Feb; 126(4):439-452. PubMed ID: 31852393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial CypD Acetylation Promotes Endothelial Dysfunction and Hypertension.
    Dikalova A; Fehrenbach D; Mayorov V; Panov A; Ao M; Lantier L; Amarnath V; Lopez MG; Billings FT; Sack MN; Dikalov S
    Circ Res; 2024 May; 134(11):1451-1464. PubMed ID: 38639088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resveratrol rescues cadmium-induced mitochondrial injury by enhancing transcriptional regulation of PGC-1α and SOD2 via the Sirt3/FoxO3a pathway in TCMK-1 cells.
    Fu B; Zhao J; Peng W; Wu H; Zhang Y
    Biochem Biophys Res Commun; 2017 Apr; 486(1):198-204. PubMed ID: 28286268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: Endothelial-myofibroblast transition, a new player in diabetic renal fibrosis.
    Li J; Bertram JF
    Nephrology (Carlton); 2010 Aug; 15(5):507-12. PubMed ID: 20649869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirt3 overexpression alleviates hyperglycemia-induced vascular inflammation through regulating redox balance, cell survival, and AMPK-mediated mitochondrial homeostasis.
    Wang Y; Zhang X; Wang P; Shen Y; Yuan K; Li M; Liang W; Que H
    J Recept Signal Transduct Res; 2019 Aug; 39(4):341-349. PubMed ID: 31680596
    [No Abstract]   [Full Text] [Related]  

  • 20. Sirt3 modulate renal ischemia-reperfusion injury through enhancing mitochondrial fusion and activating the ERK-OPA1 signaling pathway.
    Wang Q; Xu J; Li X; Liu Z; Han Y; Xu X; Li X; Tang Y; Liu Y; Yu T; Li X
    J Cell Physiol; 2019 Dec; 234(12):23495-23506. PubMed ID: 31173361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.