These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 29915023)
1. Enhancement of Peptide Vaccine Immunogenicity by Increasing Lymphatic Drainage and Boosting Serum Stability. Moynihan KD; Holden RL; Mehta NK; Wang C; Karver MR; Dinter J; Liang S; Abraham W; Melo MB; Zhang AQ; Li N; Gall SL; Pentelute BL; Irvine DJ Cancer Immunol Res; 2018 Sep; 6(9):1025-1038. PubMed ID: 29915023 [TBL] [Abstract][Full Text] [Related]
2. Cell-penetrating peptides enhance peptide vaccine accumulation and persistence in lymph nodes to drive immunogenicity. Backlund CM; Holden RL; Moynihan KD; Garafola D; Farquhar C; Mehta NK; Maiorino L; Pham S; Iorgulescu JB; Reardon DA; Wu CJ; Pentelute BL; Irvine DJ Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2204078119. PubMed ID: 35914154 [TBL] [Abstract][Full Text] [Related]
3. Comparison of two different PEGylation strategies for the liposomal adjuvant CAF09: Towards induction of CTL responses upon subcutaneous vaccine administration. Schmidt ST; Olsen CL; Franzyk H; Wørzner K; Korsholm KS; Rades T; Andersen P; Foged C; Christensen D Eur J Pharm Biopharm; 2019 Jul; 140():29-39. PubMed ID: 31055066 [TBL] [Abstract][Full Text] [Related]
4. An Albumin-binding Polypeptide Both Targets Cytotoxic T Lymphocyte Vaccines to Lymph Nodes and Boosts Vaccine Presentation by Dendritic Cells. Wang P; Zhao P; Dong S; Xu T; He X; Chen M Theranostics; 2018; 8(1):223-236. PubMed ID: 29290804 [No Abstract] [Full Text] [Related]
5. PEGylated cationic liposomes robustly augment vaccine-induced immune responses: Role of lymphatic trafficking and biodistribution. Zhuang Y; Ma Y; Wang C; Hai L; Yan C; Zhang Y; Liu F; Cai L J Control Release; 2012 Apr; 159(1):135-42. PubMed ID: 22226776 [TBL] [Abstract][Full Text] [Related]
6. Engineering Dendritic-Cell-Based Vaccines and PD-1 Blockade in Self-Assembled Peptide Nanofibrous Hydrogel to Amplify Antitumor T-Cell Immunity. Yang P; Song H; Qin Y; Huang P; Zhang C; Kong D; Wang W Nano Lett; 2018 Jul; 18(7):4377-4385. PubMed ID: 29932335 [TBL] [Abstract][Full Text] [Related]
7. Cascade Cytosol Delivery of Dual-Sensitive Micelle-Tailored Vaccine for Enhancing Cancer Immunotherapy. Jiang D; Mu W; Pang X; Liu Y; Zhang N; Song Y; Garg S ACS Appl Mater Interfaces; 2018 Nov; 10(44):37797-37811. PubMed ID: 30360105 [TBL] [Abstract][Full Text] [Related]
8. Rational Design of Antigen Incorporation Into Subunit Vaccine Biomaterials Can Enhance Antigen-Specific Immune Responses. Tsoras AN; Wong KM; Paravastu AK; Champion JA Front Immunol; 2020; 11():1547. PubMed ID: 32849524 [TBL] [Abstract][Full Text] [Related]
9. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Bijker MS; van den Eeden SJ; Franken KL; Melief CJ; van der Burg SH; Offringa R Eur J Immunol; 2008 Apr; 38(4):1033-42. PubMed ID: 18350546 [TBL] [Abstract][Full Text] [Related]
11. Cross-Linked Peptide Nanoclusters for Delivery of Oncofetal Antigen as a Cancer Vaccine. Tsoras AN; Champion JA Bioconjug Chem; 2018 Mar; 29(3):776-785. PubMed ID: 29436221 [TBL] [Abstract][Full Text] [Related]
12. Delivered antigen peptides to resident CD8α Wang L; Wang Z; Qin Y; Liang W Eur J Pharm Biopharm; 2020 Feb; 147():76-86. PubMed ID: 31887349 [TBL] [Abstract][Full Text] [Related]
13. Extending antigen release from particulate vaccines results in enhanced antitumor immune response. Kapadia CH; Tian S; Perry JL; Sailer D; Christopher Luft J; DeSimone JM J Control Release; 2018 Jan; 269():393-404. PubMed ID: 29146244 [TBL] [Abstract][Full Text] [Related]
14. Exosomes as a tumor vaccine: enhancing potency through direct loading of antigenic peptides. Hsu DH; Paz P; Villaflor G; Rivas A; Mehta-Damani A; Angevin E; Zitvogel L; Le Pecq JB J Immunother; 2003; 26(5):440-50. PubMed ID: 12973033 [TBL] [Abstract][Full Text] [Related]
15. An Brown LV; Gaffney EA; Wagg J; Coles MC J R Soc Interface; 2018 Mar; 15(140):. PubMed ID: 29540543 [TBL] [Abstract][Full Text] [Related]
16. Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Wang HY; Wang RF Adv Immunol; 2012; 114():151-76. PubMed ID: 22449781 [TBL] [Abstract][Full Text] [Related]
17. Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy. da Cunha A; Antoniazi Michelin M; Cândido Murta EF Immunol Lett; 2016 Sep; 177():25-37. PubMed ID: 27423825 [TBL] [Abstract][Full Text] [Related]
18. Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Qiu F; Becker KW; Knight FC; Baljon JJ; Sevimli S; Shae D; Gilchuk P; Joyce S; Wilson JT Biomaterials; 2018 Nov; 182():82-91. PubMed ID: 30107272 [TBL] [Abstract][Full Text] [Related]
19. Design of Peptide-Based Nanovaccines Targeting Leading Antigens From Gynecological Cancers to Induce HLA-A2.1 Restricted CD8 Xiang SD; Wilson KL; Goubier A; Heyerick A; Plebanski M Front Immunol; 2018; 9():2968. PubMed ID: 30631324 [TBL] [Abstract][Full Text] [Related]
20. Nanoliposomal vaccine containing long multi-epitope peptide E75-AE36 pulsed PADRE-induced effective immune response in mice TUBO model of breast cancer. Zamani P; Teymouri M; Nikpoor AR; Navashenaq JG; Gholizadeh Z; Darban SA; Jaafari MR Eur J Cancer; 2020 Apr; 129():80-96. PubMed ID: 32145473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]