These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 29915050)
1. Separating the effects of nucleotide and EB binding on microtubule structure. Zhang R; LaFrance B; Nogales E Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6191-E6200. PubMed ID: 29915050 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins. Zhang R; Alushin GM; Brown A; Nogales E Cell; 2015 Aug; 162(4):849-59. PubMed ID: 26234155 [TBL] [Abstract][Full Text] [Related]
3. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules. LaFrance BJ; Roostalu J; Henkin G; Greber BJ; Zhang R; Normanno D; McCollum CO; Surrey T; Nogales E Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996871 [TBL] [Abstract][Full Text] [Related]
4. Doublecortin Is Excluded from Growing Microtubule Ends and Recognizes the GDP-Microtubule Lattice. Ettinger A; van Haren J; Ribeiro SA; Wittmann T Curr Biol; 2016 Jun; 26(12):1549-1555. PubMed ID: 27238282 [TBL] [Abstract][Full Text] [Related]
5. Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations. Theisen KE; Desai NJ; Volski AM; Dima RI J Chem Phys; 2013 Sep; 139(12):121926. PubMed ID: 24089738 [TBL] [Abstract][Full Text] [Related]
6. Regulation of microtubule plus end dynamics by septin 9. Nakos K; Rosenberg M; Spiliotis ET Cytoskeleton (Hoboken); 2019 Jan; 76(1):83-91. PubMed ID: 30144301 [TBL] [Abstract][Full Text] [Related]
7. Microtubule detyrosination by VASH1/SVBP is regulated by the conformational state of tubulin in the lattice. Yue Y; Hotta T; Higaki T; Verhey KJ; Ohi R Curr Biol; 2023 Oct; 33(19):4111-4123.e7. PubMed ID: 37716348 [TBL] [Abstract][Full Text] [Related]
8. Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability. White D; Honoré S; Hubert F J Theor Biol; 2017 Sep; 429():18-34. PubMed ID: 28645857 [TBL] [Abstract][Full Text] [Related]
9. CLASPs are required for proper microtubule localization of end-binding proteins. Grimaldi AD; Maki T; Fitton BP; Roth D; Yampolsky D; Davidson MW; Svitkina T; Straube A; Hayashi I; Kaverina I Dev Cell; 2014 Aug; 30(3):343-52. PubMed ID: 25117684 [TBL] [Abstract][Full Text] [Related]
10. A molecular-mechanical model of the microtubule. Molodtsov MI; Ermakova EA; Shnol EE; Grishchuk EL; McIntosh JR; Ataullakhanov FI Biophys J; 2005 May; 88(5):3167-79. PubMed ID: 15722432 [TBL] [Abstract][Full Text] [Related]
11. Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics. von Loeffelholz O; Venables NA; Drummond DR; Katsuki M; Cross R; Moores CA Nat Commun; 2017 Dec; 8(1):2110. PubMed ID: 29235477 [TBL] [Abstract][Full Text] [Related]
12. Template-free 13-protofilament microtubule-MAP assembly visualized at 8 A resolution. Fourniol FJ; Sindelar CV; Amigues B; Clare DK; Thomas G; Perderiset M; Francis F; Houdusse A; Moores CA J Cell Biol; 2010 Nov; 191(3):463-70. PubMed ID: 20974813 [TBL] [Abstract][Full Text] [Related]
13. Structural model for differential cap maturation at growing microtubule ends. Estévez-Gallego J; Josa-Prado F; Ku S; Buey RM; Balaguer FA; Prota AE; Lucena-Agell D; Kamma-Lorger C; Yagi T; Iwamoto H; Duchesne L; Barasoain I; Steinmetz MO; Chrétien D; Kamimura S; Díaz JF; Oliva MA Elife; 2020 Mar; 9():. PubMed ID: 32151315 [TBL] [Abstract][Full Text] [Related]
14. Radial compression of microtubules and the mechanism of action of taxol and associated proteins. Needleman DJ; Ojeda-Lopez MA; Raviv U; Ewert K; Miller HP; Wilson L; Safinya CR Biophys J; 2005 Nov; 89(5):3410-23. PubMed ID: 16100275 [TBL] [Abstract][Full Text] [Related]
15. CLASP2 Has Two Distinct TOG Domains That Contribute Differently to Microtubule Dynamics. Maki T; Grimaldi AD; Fuchigami S; Kaverina I; Hayashi I J Mol Biol; 2015 Jul; 427(14):2379-95. PubMed ID: 26003921 [TBL] [Abstract][Full Text] [Related]
16. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Al-Bassam J; Chang F Trends Cell Biol; 2011 Oct; 21(10):604-14. PubMed ID: 21782439 [TBL] [Abstract][Full Text] [Related]
17. CLAMP, a novel microtubule-associated protein with EB-type calponin homology. Dougherty GW; Adler HJ; Rzadzinska A; Gimona M; Tomita Y; Lattig MC; Merritt RC; Kachar B Cell Motil Cytoskeleton; 2005 Nov; 62(3):141-56. PubMed ID: 16206169 [TBL] [Abstract][Full Text] [Related]
18. Reduction in microtubule dynamics in vitro by brain microtubule-associated proteins and by a microtubule-associated protein-2 second repeated sequence analogue. Yamauchi PS; Flynn GC; Marsh RL; Purich DL J Neurochem; 1993 Mar; 60(3):817-26. PubMed ID: 7679726 [TBL] [Abstract][Full Text] [Related]
19. A Platform for Medium-Throughput Cell-Free Analyses of Microtubule-Interacting Proteins Using Mammalian Cell Lysates. Jijumon AS; Krishnan A; Janke C Curr Protoc; 2024 Jun; 4(6):e1070. PubMed ID: 38865215 [TBL] [Abstract][Full Text] [Related]
20. Unveiling the Catalytic Mechanism of GTP Hydrolysis in Microtubules. Beckett D; Voth GA bioRxiv; 2023 May; ():. PubMed ID: 37205601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]