BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 29915050)

  • 1. Separating the effects of nucleotide and EB binding on microtubule structure.
    Zhang R; LaFrance B; Nogales E
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6191-E6200. PubMed ID: 29915050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.
    Zhang R; Alushin GM; Brown A; Nogales E
    Cell; 2015 Aug; 162(4):849-59. PubMed ID: 26234155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.
    LaFrance BJ; Roostalu J; Henkin G; Greber BJ; Zhang R; Normanno D; McCollum CO; Surrey T; Nogales E
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doublecortin Is Excluded from Growing Microtubule Ends and Recognizes the GDP-Microtubule Lattice.
    Ettinger A; van Haren J; Ribeiro SA; Wittmann T
    Curr Biol; 2016 Jun; 26(12):1549-1555. PubMed ID: 27238282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations.
    Theisen KE; Desai NJ; Volski AM; Dima RI
    J Chem Phys; 2013 Sep; 139(12):121926. PubMed ID: 24089738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of microtubule plus end dynamics by septin 9.
    Nakos K; Rosenberg M; Spiliotis ET
    Cytoskeleton (Hoboken); 2019 Jan; 76(1):83-91. PubMed ID: 30144301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule detyrosination by VASH1/SVBP is regulated by the conformational state of tubulin in the lattice.
    Yue Y; Hotta T; Higaki T; Verhey KJ; Ohi R
    Curr Biol; 2023 Oct; 33(19):4111-4123.e7. PubMed ID: 37716348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the effect of end-binding proteins and microtubule targeting chemotherapy drugs on microtubule dynamic instability.
    White D; Honoré S; Hubert F
    J Theor Biol; 2017 Sep; 429():18-34. PubMed ID: 28645857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CLASPs are required for proper microtubule localization of end-binding proteins.
    Grimaldi AD; Maki T; Fitton BP; Roth D; Yampolsky D; Davidson MW; Svitkina T; Straube A; Hayashi I; Kaverina I
    Dev Cell; 2014 Aug; 30(3):343-52. PubMed ID: 25117684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A molecular-mechanical model of the microtubule.
    Molodtsov MI; Ermakova EA; Shnol EE; Grishchuk EL; McIntosh JR; Ataullakhanov FI
    Biophys J; 2005 May; 88(5):3167-79. PubMed ID: 15722432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics.
    von Loeffelholz O; Venables NA; Drummond DR; Katsuki M; Cross R; Moores CA
    Nat Commun; 2017 Dec; 8(1):2110. PubMed ID: 29235477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-free 13-protofilament microtubule-MAP assembly visualized at 8 A resolution.
    Fourniol FJ; Sindelar CV; Amigues B; Clare DK; Thomas G; Perderiset M; Francis F; Houdusse A; Moores CA
    J Cell Biol; 2010 Nov; 191(3):463-70. PubMed ID: 20974813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural model for differential cap maturation at growing microtubule ends.
    Estévez-Gallego J; Josa-Prado F; Ku S; Buey RM; Balaguer FA; Prota AE; Lucena-Agell D; Kamma-Lorger C; Yagi T; Iwamoto H; Duchesne L; Barasoain I; Steinmetz MO; Chrétien D; Kamimura S; Díaz JF; Oliva MA
    Elife; 2020 Mar; 9():. PubMed ID: 32151315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial compression of microtubules and the mechanism of action of taxol and associated proteins.
    Needleman DJ; Ojeda-Lopez MA; Raviv U; Ewert K; Miller HP; Wilson L; Safinya CR
    Biophys J; 2005 Nov; 89(5):3410-23. PubMed ID: 16100275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CLASP2 Has Two Distinct TOG Domains That Contribute Differently to Microtubule Dynamics.
    Maki T; Grimaldi AD; Fuchigami S; Kaverina I; Hayashi I
    J Mol Biol; 2015 Jul; 427(14):2379-95. PubMed ID: 26003921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP.
    Al-Bassam J; Chang F
    Trends Cell Biol; 2011 Oct; 21(10):604-14. PubMed ID: 21782439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CLAMP, a novel microtubule-associated protein with EB-type calponin homology.
    Dougherty GW; Adler HJ; Rzadzinska A; Gimona M; Tomita Y; Lattig MC; Merritt RC; Kachar B
    Cell Motil Cytoskeleton; 2005 Nov; 62(3):141-56. PubMed ID: 16206169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction in microtubule dynamics in vitro by brain microtubule-associated proteins and by a microtubule-associated protein-2 second repeated sequence analogue.
    Yamauchi PS; Flynn GC; Marsh RL; Purich DL
    J Neurochem; 1993 Mar; 60(3):817-26. PubMed ID: 7679726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the Catalytic Mechanism of GTP Hydrolysis in Microtubules.
    Beckett D; Voth GA
    bioRxiv; 2023 May; ():. PubMed ID: 37205601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the catalytic mechanism of GTP hydrolysis in microtubules.
    Beckett D; Voth GA
    Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2305899120. PubMed ID: 37364095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.