These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29915058)

  • 1. Broadly conserved Na
    Ficici E; Zhou W; Castellano S; Faraldo-Gómez JD
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6172-E6181. PubMed ID: 29915058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na
    Castellano S; Claxton DP; Ficici E; Kusakizako T; Stix R; Zhou W; Nureki O; Mchaourab HS; Faraldo-Gómez JD
    J Biol Chem; 2021; 296():100262. PubMed ID: 33837745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na
    Castellano S; Claxton DP; Ficici E; Kusakizako T; Stix R; Zhou W; Nureki O; Mchaourab HS; Faraldo-Gómez JD
    J Biol Chem; 2021 Jan; ():. PubMed ID: 33402425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal domain of an archaeal multidrug and toxin extrusion (MATE) transporter mediates proton coupling required for prokaryotic drug resistance.
    Jagessar KL; Mchaourab HS; Claxton DP
    J Biol Chem; 2019 Aug; 294(34):12807-12814. PubMed ID: 31289123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter.
    Tanaka Y; Hipolito CJ; Maturana AD; Ito K; Kuroda T; Higuchi T; Katoh T; Kato HE; Hattori M; Kumazaki K; Tsukazaki T; Ishitani R; Suga H; Nureki O
    Nature; 2013 Apr; 496(7444):247-51. PubMed ID: 23535598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for Two-Step Proton Transfer Reactions in the Outward-Facing Form of MATE Transporter.
    Nishima W; Mizukami W; Tanaka Y; Ishitani R; Nureki O; Sugita Y
    Biophys J; 2016 Mar; 110(6):1346-54. PubMed ID: 27028644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A c subunit with four transmembrane helices and one ion (Na+)-binding site in an archaeal ATP synthase: implications for c ring function and structure.
    Mayer F; Leone V; Langer JD; Faraldo-Gómez JD; Müller V
    J Biol Chem; 2012 Nov; 287(47):39327-37. PubMed ID: 23007388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic Analysis of MATE-Type Multidrug Exporter with Its Inhibitors.
    Kusakizako T; Tanaka Y; Hipolito CJ; Suga H; Nureki O
    Methods Mol Biol; 2018; 1700():37-57. PubMed ID: 29177824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into conformational regulation of PfMATE transporter from Pyrococcus furiosus induced by alternating protonation state of Asp41 residue: A molecular dynamics simulation study.
    Jin X; Shao Y; Bai Q; Xue W; Liu H; Yao X
    Biochim Biophys Acta; 2016 Jun; 1860(6):1173-80. PubMed ID: 26879959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the High-affinity Substrate-binding Site of the Multidrug and Toxic Compound Extrusion (MATE) Family Transporter from Pseudomonas stutzeri.
    Nie L; Grell E; Malviya VN; Xie H; Wang J; Michel H
    J Biol Chem; 2016 Jul; 291(30):15503-14. PubMed ID: 27235402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inward-facing conformation of a multidrug resistance MATE family transporter.
    Zakrzewska S; Mehdipour AR; Malviya VN; Nonaka T; Koepke J; Muenke C; Hausner W; Hummer G; Safarian S; Michel H
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12275-12284. PubMed ID: 31160466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the ion coupling mechanism of the MATE transporter ClbM.
    Krah A; Huber RG; Zachariae U; Bond PJ
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183137. PubMed ID: 31786188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of Alternating Access in Multidrug and Toxin Extrusion (MATE) Transporters.
    Claxton DP; Jagessar KL; Mchaourab HS
    J Mol Biol; 2021 Aug; 433(16):166959. PubMed ID: 33774036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and computational analysis of the secretome of the hyperthermophilic archaeon Pyrococcus furiosus.
    Schmid G; Mathiesen G; Arntzen MO; Eijsink VG; Thomm M
    Extremophiles; 2013 Nov; 17(6):921-30. PubMed ID: 23979514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium and proton coupling in the conformational cycle of a MATE antiporter from
    Claxton DP; Jagessar KL; Steed PR; Stein RA; Mchaourab HS
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6182-E6190. PubMed ID: 29915043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural biology of the multidrug and toxic compound extrusion superfamily transporters.
    Kusakizako T; Miyauchi H; Ishitani R; Nureki O
    Biochim Biophys Acta Biomembr; 2020 Dec; 1862(12):183154. PubMed ID: 31866287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure and nucleic acid-binding activity of the CRISPR-associated protein Csx1 of Pyrococcus furiosus.
    Kim YK; Kim YG; Oh BH
    Proteins; 2013 Feb; 81(2):261-70. PubMed ID: 22987782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure determination of fibrillarin from the hyperthermophilic archaeon Pyrococcus furiosus.
    Deng L; Starostina NG; Liu ZJ; Rose JP; Terns RM; Terns MP; Wang BC
    Biochem Biophys Res Commun; 2004 Mar; 315(3):726-32. PubMed ID: 14975761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical evidence for the presence of two alpha-glucoside ABC-transport systems in the hyperthermophilic archaeon Pyrococcus furiosus.
    Koning SM; Konings WN; Driessen AJ
    Archaea; 2002 Mar; 1(1):19-25. PubMed ID: 15803655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the ion-coupling mechanism in the MATE transporter NorM-VC.
    Krah A; Zachariae U
    Phys Biol; 2017 Jun; 14(4):045009. PubMed ID: 28169223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.