BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 29915110)

  • 1. Azotobacter vinelandii Nitrogenase Activity, Hydrogen Production, and Response to Oxygen Exposure.
    Natzke J; Noar J; Bruno-Bárcena JM
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915110
    [No Abstract]   [Full Text] [Related]  

  • 2. Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor.
    Pau RN; Eldridge ME; Lowe DJ; Mitchenall LA; Eady RR
    Biochem J; 1993 Jul; 293 ( Pt 1)(Pt 1):101-7. PubMed ID: 8392330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential metals for nitrogen fixation in a free-living N₂-fixing bacterium: chelation, homeostasis and high use efficiency.
    Bellenger JP; Wichard T; Xu Y; Kraepiel AM
    Environ Microbiol; 2011 Jun; 13(6):1395-411. PubMed ID: 21392197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional Analysis of an Ammonium-Excreting Strain of Azotobacter vinelandii Deregulated for Nitrogen Fixation.
    Barney BM; Plunkett MH; Natarajan V; Mus F; Knutson CM; Peters JW
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated expression of the nifM of Azotobacter vinelandii in response to molybdenum and vanadium supplements in Burk's nitrogen-free growth medium.
    Lei S; Pulakat L; Gavini N
    Biochem Biophys Res Commun; 1999 Oct; 264(1):186-90. PubMed ID: 10527862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli.
    Yang J; Xie X; Wang X; Dixon R; Wang YP
    Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3718-25. PubMed ID: 25139995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter vinelandii under diazotrophic conditions.
    Noumsi CJ; Pourhassan N; Darnajoux R; Deicke M; Wichard T; Burrus V; Bellenger JP
    Environ Microbiol Rep; 2016 Feb; 8(1):76-84. PubMed ID: 26549632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo.
    Moshiri F; Kim JW; Fu C; Maier RJ
    Mol Microbiol; 1994 Oct; 14(1):101-14. PubMed ID: 7830548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation.
    McRose DL; Baars O; Morel FMM; Kraepiel AML
    Environ Microbiol; 2017 Sep; 19(9):3595-3605. PubMed ID: 28703469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6.
    Noar J; Loveless T; Navarro-Herrero JL; Olson JW; Bruno-Bárcena JM
    Appl Environ Microbiol; 2015 Jul; 81(13):4507-16. PubMed ID: 25911479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase.
    Miller RW; Eady RR
    Biochem J; 1988 Dec; 256(2):429-32. PubMed ID: 3223922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between paralogous bacterial enhancer-binding proteins enable metal-dependent regulation of alternative nitrogenases in Azotobacter vinelandii.
    Appia-Ayme C; Little R; Chandra G; de Oliveira Martins C; Bueno Batista M; Dixon R
    Mol Microbiol; 2022 Jul; 118(1-2):105-124. PubMed ID: 35718936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of the Metalloclusters of Nitrogenases.
    Hu Y; Ribbe MW
    Annu Rev Biochem; 2016 Jun; 85():455-83. PubMed ID: 26844394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and isolation of vanadium nitrogenase from Azotobacter vinelandii by molybdenum depletion.
    Sippel D; Schlesier J; Rohde M; Trncik C; Decamps L; Djurdjevic I; Spatzal T; Andrade SL; Einsle O
    J Biol Inorg Chem; 2017 Jan; 22(1):161-168. PubMed ID: 27928630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity.
    Rodríguez-Quiñones F; Bosch R; Imperial J
    J Bacteriol; 1993 May; 175(10):2926-35. PubMed ID: 8491713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum, and vanadium.
    Jacobitz S; Bishop PE
    J Bacteriol; 1992 Jun; 174(12):3884-8. PubMed ID: 1597411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-potential terminal oxidase associated with the iron-only nitrogenase from the nitrogen-fixing bacterium
    Varghese F; Kabasakal BV; Cotton CAR; Schumacher J; Rutherford AW; Fantuzzi A; Murray JW
    J Biol Chem; 2019 Jun; 294(24):9367-9376. PubMed ID: 31043481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of N2 fixation in Mo-limited batch and continuous cultures of Azotobacter vinelandii.
    Eady RR; Robson RL
    Biochem J; 1984 Dec; 224(3):853-62. PubMed ID: 6596950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of NifEN and VnfEN for the Assembly of Nitrogenase Active Site Cofactors in Azotobacter vinelandii.
    Pérez-González A; Jimenez-Vicente E; Gies-Elterlein J; Salinero-Lanzarote A; Yang ZY; Einsle O; Seefeldt LC; Dean DR
    mBio; 2021 Aug; 12(4):e0156821. PubMed ID: 34281397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molybdenum trafficking for nitrogen fixation.
    Hernandez JA; George SJ; Rubio LM
    Biochemistry; 2009 Oct; 48(41):9711-21. PubMed ID: 19772354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.