These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 29915174)

  • 1. Twinning in metastable high-entropy alloys.
    Huang S; Huang H; Li W; Kim D; Lu S; Li X; Holmström E; Kwon SK; Vitos L
    Nat Commun; 2018 Jun; 9(1):2381. PubMed ID: 29915174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-Scale In Situ Observations of Reversible Phase Transformation Assisted Twinning in a CrCoNi Medium-Entropy Alloy.
    Chu S; Zhang F; Chen D; Chen M; Liu P
    Nano Lett; 2024 Mar; 24(12):3624-3630. PubMed ID: 38421603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling the Stacking Fault-Driven Phase Transition Delaying Cryogenic Fracture in Fe-Co-Cr-Ni-Mo-C-Based Medium-Entropy Alloy.
    Ding H; Du Z; Zhang H; Liu Y; Zhao S; Yang Y; Wang C; Lei S; Geng R; Wang C
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical inhomogeneity-induced profuse nanotwinning and phase transformation in AuCu nanowires.
    Yang C; Zhang B; Fu L; Wang Z; Teng J; Shao R; Wu Z; Chang X; Ding J; Wang L; Han X
    Nat Commun; 2023 Sep; 14(1):5705. PubMed ID: 37709777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of dilute aluminum and molybdenum on stacking fault and twin formation in FeNiCoCr-based high entropy alloys based on density functional theory.
    Yu P; Zhuang Y; Chou JP; Wei J; Lo YC; Hu A
    Sci Rep; 2019 Jul; 9(1):10940. PubMed ID: 31358813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals.
    Zhong L; Zhang Y; Wang X; Zhu T; Mao SX
    Nat Commun; 2024 Jan; 15(1):560. PubMed ID: 38228646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exceptional enhancement of mechanical properties in high-entropy alloys via thermodynamically guided local chemical ordering.
    Dasari S; Sharma A; Jiang C; Gwalani B; Lin WC; Lo KC; Gorsse S; Yeh AC; Srinivasan SG; Banerjee R
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2211787120. PubMed ID: 37252982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation mechanisms in high entropy alloys: a minireview of short-range order effects.
    Rasooli N; Chen W; Daly M
    Nanoscale; 2024 Jan; 16(4):1650-1663. PubMed ID: 38180135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of Deformation Twinning in bcc Tungsten and Molybdenum.
    Xiao J; Li S; Ma X; Gao J; Deng C; Wu Z; Zhu Y
    Phys Rev Lett; 2023 Sep; 131(13):136101. PubMed ID: 37832014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoindentation into a bcc high-entropy HfNbTaTiZr alloy-an atomistic study of the effect of short-range order.
    Alhafez IA; Deluigi OR; Tramontina D; Merkert N; Urbassek HM; Bringa EM
    Sci Rep; 2024 Apr; 14(1):9112. PubMed ID: 38643297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First principles modeling of mechanical properties of binary alloys containing Ga, Sn, and In for soldering applications.
    Mattes S; Brennan S; Woodcox M
    J Phys Condens Matter; 2023 Sep; 35(48):. PubMed ID: 37611615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the identification of twinning in body-centred cubic nanoparticles.
    Hopper ER; Boukouvala C; Johnstone DN; Biggins JS; Ringe E
    Nanoscale; 2020 Nov; 12(43):22009-22013. PubMed ID: 33135028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dislocation flow turbulence simultaneously enhances strength and ductility.
    Chen Y; Feng H; Li J; Liu B; Jiang C; Liu Y; Fang Q; Liaw PK
    Proc Natl Acad Sci U S A; 2024 Mar; 121(13):e2316912121. PubMed ID: 38502698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General Entropy Approach Toward Ultratough Sustainable Plastics.
    Hou X; Pei QX; Sun W; Song B; Chen H; Liu Z; Kong J; Zhang YW; Liu P; He C
    Macromol Rapid Commun; 2024 Mar; 45(5):e2300543. PubMed ID: 38102953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying short-range order using atom probe tomography.
    He M; Davids WJ; Breen AJ; Ringer SP
    Nat Mater; 2024 Jul; ():. PubMed ID: 38956352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clarifying the four core effects of high-entropy materials.
    Hsu WL; Tsai CW; Yeh AC; Yeh JW
    Nat Rev Chem; 2024 Jun; 8(6):471-485. PubMed ID: 38698142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Advances in High-Entropy Alloys.
    Zhang Y; Li R
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ TEM Deformation of High Entropy Alloys.
    Payne MI; Zhang M; Radmilović VR; Kumar P; Asta M; Ritchie RO; Minor AM
    Microsc Microanal; 2023 Jul; 29(Supplement_1):1518. PubMed ID: 37613597
    [No Abstract]   [Full Text] [Related]  

  • 19. A Novel Preparation Route for Enhancing Mechanical Properties of High Entropy Alloys.
    Kratochvíl P; Pru Ša F; Thürlova H
    Microsc Microanal; 2023 Jul; 29(Supplement_1):1525-1526. PubMed ID: 37613863
    [No Abstract]   [Full Text] [Related]  

  • 20. Atomic electron tomography reveals chemical order in medium- and high-entropy alloys.
    Nature; 2023 Dec; ():. PubMed ID: 38123847
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.