These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29915177)

  • 1. Transient Triplet Differential (TTD) Method for Background Free Photoacoustic Imaging.
    Tan JWY; Lee CH; Kopelman R; Wang X
    Sci Rep; 2018 Jun; 8(1):9290. PubMed ID: 29915177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multispectral Photoacoustic Imaging of Tumor Protease Activity with a Gold Nanocage-Based Activatable Probe.
    Liu C; Li S; Gu Y; Xiong H; Wong WT; Sun L
    Mol Imaging Biol; 2018 Dec; 20(6):919-929. PubMed ID: 29736563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic imaging of lymphatic pumping.
    Forbrich A; Heinmiller A; Zemp RJ
    J Biomed Opt; 2017 Oct; 22(10):1-6. PubMed ID: 29022300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based reconstruction integrated with fluence compensation for photoacoustic tomography.
    Bu S; Liu Z; Shiina T; Kondo K; Yamakawa M; Fukutani K; Someda Y; Asao Y
    IEEE Trans Biomed Eng; 2012 May; 59(5):1354-63. PubMed ID: 22345521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Multiwavelength Photoacoustic and Plane-Wave Ultrasound Imaging for Probing Dynamic Phase-Change Contrast Agents.
    Yoon H; Emelianov SY
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):595-598. PubMed ID: 29993455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo photoacoustic difference-spectra imaging of bacteria using photoswitchable chromoproteins.
    Chee RKW; Li Y; Zhang W; Campbell RE; Zemp RJ
    J Biomed Opt; 2018 Oct; 23(10):1-11. PubMed ID: 30334395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoacoustic in vivo 3D imaging of tumor using a highly tumor-targeting probe under high-threshold conditions.
    Yamada H; Matsumoto N; Komaki T; Konishi H; Kimura Y; Son A; Imai H; Matsuda T; Aoyama Y; Kondo T
    Sci Rep; 2020 Nov; 10(1):19363. PubMed ID: 33168875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacoustic lifetime contrast between methylene blue monomers and self-quenched dimers as a model for dual-labeled activatable probes.
    Morgounova E; Shao Q; Hackel BJ; Thomas DD; Ashkenazi S
    J Biomed Opt; 2013 May; 18(5):56004. PubMed ID: 23640075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversibly Photoswitching Upconversion Nanoparticles for Super-Sensitive Photoacoustic Molecular Imaging.
    Liu C; Zheng X; Dai T; Wang H; Chen X; Chen B; Sun T; Wang F; Chu S; Rao J
    Angew Chem Int Ed Engl; 2022 May; 61(19):e202116802. PubMed ID: 35139242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel small molecular dye-loaded lipid nanoparticles with efficient near-infrared-II absorption for photoacoustic imaging and photothermal therapy of hepatocellular carcinoma.
    Chen Q; Chen J; He M; Bai Y; Yan H; Zeng N; Liu F; Wen S; Song L; Sheng Z; Liu C; Fang C
    Biomater Sci; 2019 Aug; 7(8):3165-3177. PubMed ID: 31123730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Contrast Photoacoustic Imaging of Localized Cysteine in Orthotopic Breast Cancer Enabled by A Totally-Caged Methylene Blue Probe.
    Xie S; Li X; Zeng Q; Wu Y; Zhang T
    Chemistry; 2024 Feb; 30(11):e202302878. PubMed ID: 38103037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustogenic Probes: A New Frontier in Photoacoustic Imaging.
    Knox HJ; Chan J
    Acc Chem Res; 2018 Nov; 51(11):2897-2905. PubMed ID: 30379532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Narrow Absorption NIR Wavelength Organic Nanoparticles Enable Multiplexed Photoacoustic Imaging.
    Lu HD; Wilson BK; Heinmiller A; Faenza B; Hejazi S; Prud'homme RK
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14379-88. PubMed ID: 27153806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multispectral photoacoustic imaging of cancer with broadband CuS nanoparticles covering both near-infrared I and II biological windows.
    Liu Y; Gao D; Xu M; Yuan Z
    J Biophotonics; 2019 Mar; 12(3):e201800237. PubMed ID: 30414259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence Quenching Nanoprobes Dedicated to In Vivo Photoacoustic Imaging and High-Efficient Tumor Therapy in Deep-Seated Tissue.
    Qin H; Zhou T; Yang S; Xing D
    Small; 2015 Jun; 11(22):2675-86. PubMed ID: 25656695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Imaging Techniques and Genetically Encoded Probes for Photoacoustic Imaging.
    Liu C; Gong X; Lin R; Liu F; Chen J; Wang Z; Song L; Chu J
    Theranostics; 2016; 6(13):2414-2430. PubMed ID: 27877244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Deep Learning Approach to Photoacoustic Wavefront Localization in Deep-Tissue Medium.
    Johnstonbaugh K; Agrawal S; Durairaj DA; Fadden C; Dangi A; Karri SPK; Kothapalli SR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2649-2659. PubMed ID: 31944951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spread Spectrum Photoacoustic Tomography With Image Optimization.
    Cao M; Feng T; Yuan J; Xu G; Wang X; Carson PL
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):411-419. PubMed ID: 27834651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of Molecular Probes for Spatio-temporal Analysis of in Vivo Tumor with Photoacoustic Imaging].
    Onoe S
    Yakugaku Zasshi; 2016; 136(3):491-8. PubMed ID: 26935092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, Characterization, and Biomedical Applications of a Targeted Dual-Modal Near-Infrared-II Fluorescence and Photoacoustic Imaging Nanoprobe.
    Cheng K; Chen H; Jenkins CH; Zhang G; Zhao W; Zhang Z; Han F; Fung J; Yang M; Jiang Y; Xing L; Cheng Z
    ACS Nano; 2017 Dec; 11(12):12276-12291. PubMed ID: 29202225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.