These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

656 related articles for article (PubMed ID: 29915254)

  • 21. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice.
    Umbarawan Y; Syamsunarno MRAA; Koitabashi N; Yamaguchi A; Hanaoka H; Hishiki T; Nagahata-Naito Y; Obinata H; Sano M; Sunaga H; Matsui H; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Cardiovasc Res; 2018 Jul; 114(8):1132-1144. PubMed ID: 29554241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SR and mitochondria: calcium cross-talk between kissing cousins.
    Dorn GW; Maack C
    J Mol Cell Cardiol; 2013 Feb; 55():42-9. PubMed ID: 22902320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial oxidative stress and dysfunction in myocardial remodelling.
    Tsutsui H; Kinugawa S; Matsushima S
    Cardiovasc Res; 2009 Feb; 81(3):449-56. PubMed ID: 18854381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interplay of defective excitation-contraction coupling, energy starvation, and oxidative stress in heart failure.
    Kohlhaas M; Maack C
    Trends Cardiovasc Med; 2011 Apr; 21(3):69-73. PubMed ID: 22626245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction.
    Fillmore N; Levasseur JL; Fukushima A; Wagg CS; Wang W; Dyck JRB; Lopaschuk GD
    Mol Med; 2018 Mar; 24(1):3. PubMed ID: 30134787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic remodeling in takotsubo syndrome.
    Wang T; Xiong T; Yang Y; Zuo B; Chen X; Wang D
    Front Cardiovasc Med; 2022; 9():1060070. PubMed ID: 36505375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant.
    Yamada S; Kane GC; Behfar A; Liu XK; Dyer RB; Faustino RS; Miki T; Seino S; Terzic A
    J Physiol; 2006 Dec; 577(Pt 3):1053-65. PubMed ID: 17038430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic support for the heart: complementary therapy for heart failure?
    Heggermont WA; Papageorgiou AP; Heymans S; van Bilsen M
    Eur J Heart Fail; 2016 Dec; 18(12):1420-1429. PubMed ID: 27813339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heart spotting.
    el Azzouzi H; De Windt LJ
    Basic Res Cardiol; 2008 May; 103(3):228-31. PubMed ID: 18274799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic therapy of heart failure.
    Fragasso G; Salerno A; Spoladore R; Bassanelli G; Arioli F; Margonato A
    Curr Pharm Des; 2008; 14(25):2582-91. PubMed ID: 18991675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.
    Doenst T; Pytel G; Schrepper A; Amorim P; Färber G; Shingu Y; Mohr FW; Schwarzer M
    Cardiovasc Res; 2010 Jun; 86(3):461-70. PubMed ID: 20035032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energetics and metabolism in the failing heart: important but poorly understood.
    Turer AT; Malloy CR; Newgard CB; Podgoreanu MV
    Curr Opin Clin Nutr Metab Care; 2010 Jul; 13(4):458-65. PubMed ID: 20453645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Oct; 1861(10):1525-34. PubMed ID: 26996746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using metabolomics to assess myocardial metabolism and energetics in heart failure.
    Turer AT
    J Mol Cell Cardiol; 2013 Feb; 55():12-8. PubMed ID: 22982115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing cardiac fatty acid and glucose metabolism as an approach to treating heart failure.
    Lopaschuk GD
    Semin Cardiothorac Vasc Anesth; 2006 Sep; 10(3):228-30. PubMed ID: 16959756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In silico studies on the sensitivity of myocardial PCr/ATP to changes in mitochondrial enzyme activity and oxygen concentration.
    Edwards LM; Ashrafian H; Korzeniewski B
    Mol Biosyst; 2011 Dec; 7(12):3335-42. PubMed ID: 22025222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myocardial metabolism in heart failure: Purinergic signalling and other metabolic concepts.
    Birkenfeld AL; Jordan J; Dworak M; Merkel T; Burnstock G
    Pharmacol Ther; 2019 Feb; 194():132-144. PubMed ID: 30149104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic efficiency promotes protection from pressure overload in hearts expressing slow skeletal troponin I.
    Carley AN; Taglieri DM; Bi J; Solaro RJ; Lewandowski ED
    Circ Heart Fail; 2015 Jan; 8(1):119-27. PubMed ID: 25424393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.