These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29915427)

  • 1. Carbon nanotubes as emerging quantum-light sources.
    He X; Htoon H; Doorn SK; Pernice WHP; Pyatkov F; Krupke R; Jeantet A; Chassagneux Y; Voisin C
    Nat Mater; 2018 Aug; 17(8):663-670. PubMed ID: 29915427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes.
    Gifford BJ; Kilina S; Htoon H; Doorn SK; Tretiak S
    Acc Chem Res; 2020 Sep; 53(9):1791-1801. PubMed ID: 32805109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes.
    Walden-Newman W; Sarpkaya I; Strauf S
    Nano Lett; 2012 Apr; 12(4):1934-41. PubMed ID: 22439967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room Temperature Lasing from Semiconducting Single-Walled Carbon Nanotubes.
    Chen JS; Dasgupta A; Morrow DJ; Emmanuele R; Marks TJ; Hersam MC; Ma X
    ACS Nano; 2022 Oct; 16(10):16776-16783. PubMed ID: 36121213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoexcited Aromatic Reactants Give Multicolor Carbon Nanotube Fluorescence from Quantum Defects.
    Zheng Y; Bachilo SM; Weisman RB
    ACS Nano; 2020 Jan; 14(1):715-723. PubMed ID: 31887007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths.
    Husel L; Trapp J; Scherzer J; Wu X; Wang P; Fortner J; Nutz M; Hümmer T; Polovnikov B; Förg M; Hunger D; Wang Y; Högele A
    Nat Commun; 2024 May; 15(1):3989. PubMed ID: 38734738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities.
    Luo Y; Ahmadi ED; Shayan K; Ma Y; Mistry KS; Zhang C; Hone J; Blackburn JL; Strauf S
    Nat Commun; 2017 Nov; 8(1):1413. PubMed ID: 29123125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanotube Color Centers in Plasmonic Nanocavities: A Path to Photon Indistinguishability at Telecom Bands.
    Luo Y; He X; Kim Y; Blackburn JL; Doorn SK; Htoon H; Strauf S
    Nano Lett; 2019 Dec; 19(12):9037-9044. PubMed ID: 31682759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation Measurements for Carbon Nanotubes with Quantum Defects.
    Li MK; Dehm S; Kappes MM; Hennrich F; Krupke R
    ACS Nano; 2024 Apr; 18(13):9525-9534. PubMed ID: 38513118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarized and Bright Telecom C-Band Single-Photon Source from InP-Based Quantum Dots Coupled to Elliptical Bragg Gratings.
    Ge Z; Chung T; He YM; Benyoucef M; Huo Y
    Nano Lett; 2024 Feb; 24(5):1746-1752. PubMed ID: 38286024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electroluminescent and tunable cavity-enhanced carbon-nanotube-emitter in the telecom band.
    Ovvyan AP; Li MK; Gehring H; Beutel F; Kumar S; Hennrich F; Wei L; Chen Y; Pyatkov F; Krupke R; Pernice WHP
    Nat Commun; 2023 Jul; 14(1):3933. PubMed ID: 37402723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Temperature Single Carbon Nanotube Spectroscopy of sp
    He X; Gifford BJ; Hartmann NF; Ihly R; Ma X; Kilina SV; Luo Y; Shayan K; Strauf S; Blackburn JL; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2017 Nov; 11(11):10785-10796. PubMed ID: 28958146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band.
    Holewa P; Vajner DA; Zięba-Ostój E; Wasiluk M; Gaál B; Sakanas A; Burakowski M; Mrowiński P; Krajnik B; Xiong M; Yvind K; Gregersen N; Musiał A; Huck A; Heindel T; Syperek M; Semenova E
    Nat Commun; 2024 Apr; 15(1):3358. PubMed ID: 38637520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanowire-based sources of non-classical light.
    Dalacu D; Poole PJ; Williams RL
    Nanotechnology; 2019 Jun; 30(23):232001. PubMed ID: 30703755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities.
    Graf A; Held M; Zakharko Y; Tropf L; Gather MC; Zaumseil J
    Nat Mater; 2017 Sep; 16(9):911-917. PubMed ID: 28714985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chirality-Enriched Carbon Nanotubes for Next-Generation Computing.
    Gaviria Rojas WA; Hersam MC
    Adv Mater; 2020 Oct; 32(41):e1905654. PubMed ID: 32255238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-temperature single-photon generation from solitary dopants of carbon nanotubes.
    Ma X; Hartmann NF; Baldwin JK; Doorn SK; Htoon H
    Nat Nanotechnol; 2015 Aug; 10(8):671-5. PubMed ID: 26167766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths.
    Hoang TB; Beetz J; Lermer M; Midolo L; Kamp M; Höfling S; Fiore A
    Opt Express; 2012 Sep; 20(19):21758-65. PubMed ID: 23037295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoluminescence Quantum Yield of Single-Wall Carbon Nanotubes Corrected for the Photon Reabsorption Effect.
    Wei X; Tanaka T; Li S; Tsuzuki M; Wang G; Yao Z; Li L; Yomogida Y; Hirano A; Liu H; Kataura H
    Nano Lett; 2020 Jan; 20(1):410-417. PubMed ID: 31860318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.