BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 29915992)

  • 1. False Positive Reduction by an Annular Model as a Set of Few Features for Microcalcification Detection to Assist Early Diagnosis of Breast Cancer.
    Hernández-Capistrán J; Martínez-Carballido JF; Rosas-Romero R
    J Med Syst; 2018 Jun; 42(8):134. PubMed ID: 29915992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the accuracy in detection of clustered microcalcifications with a context-sensitive classification model.
    Wang J; Nishikawa RM; Yang Y
    Med Phys; 2016 Jan; 43(1):159. PubMed ID: 26745908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breast microcalcifications detection based on fusing features with DTCWT.
    Wang Z; Xin J; Zhang Q; Gao S; Ma C; Ren J; Zhang H; Qian W; Zhu W; Zhang X; Liu J
    J Xray Sci Technol; 2020; 28(2):197-218. PubMed ID: 31985483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grouped fuzzy SVM with EM-based partition of sample space for clustered microcalcification detection.
    Wang H; Feng J; Wang H
    Technol Health Care; 2017 Jul; 25(S1):325-336. PubMed ID: 28582921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative comparison of clustered microcalcifications in for-presentation and for-processing mammograms in full-field digital mammography.
    Wang J; Nishikawa RM; Yang Y
    Med Phys; 2017 Jul; 44(7):3726-3738. PubMed ID: 28477395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. False-positive reduction in computer-aided mass detection using mammographic texture analysis and classification.
    Dhahbi S; Barhoumi W; Kurek J; Swiderski B; Kruk M; Zagrouba E
    Comput Methods Programs Biomed; 2018 Jul; 160():75-83. PubMed ID: 29728249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relevance vector machine for automatic detection of clustered microcalcifications.
    Wei L; Yang Y; Nishikawa RM; Wernick MN; Edwards A
    IEEE Trans Med Imaging; 2005 Oct; 24(10):1278-85. PubMed ID: 16229415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fissures segmentation using surface features: content-based retrieval for mammographic mass using ensemble classifier.
    Liu H; Lan Y; Xu X; Song E; Hung CC
    Acad Radiol; 2011 Dec; 18(12):1475-84. PubMed ID: 22055794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of clustered microcalcifications in digital mammograms: Study on applying adaboost with SVM-based component classifiers.
    Dehghan F; Abrishami-Moghaddam H; Giti M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4789-92. PubMed ID: 19163787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic detection of microcalcifications using mathematical morphology and a support vector machine.
    Zhang E; Wang F; Li Y; Bai X
    Biomed Mater Eng; 2014; 24(1):53-9. PubMed ID: 24211882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Detection of microcalcification clusters regions in mammograms combining discriminative deep belief networks].
    Song L; Wei X; Wang Q; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):268-275. PubMed ID: 33913286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Efficient Approach for Automated Mass Segmentation and Classification in Mammograms.
    Dong M; Lu X; Ma Y; Guo Y; Ma Y; Wang K
    J Digit Imaging; 2015 Oct; 28(5):613-25. PubMed ID: 25776767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Architectural Distortion in Mammograms Based on Texture Analysis Using Support Vector Machine Classifier with Clinical Evaluation.
    Kamra A; Jain VK; Singh S; Mittal S
    J Digit Imaging; 2016 Feb; 29(1):104-14. PubMed ID: 26138756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines.
    Jebamony J; Jacob D
    Curr Med Imaging; 2020; 16(6):703-710. PubMed ID: 32723242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography.
    Zyout I; Czajkowska J; Grzegorzek M
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():95-107. PubMed ID: 25795630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A support vector machine approach for detection of microcalcifications.
    El-Naqa I; Yang Y; Wernick MN; Galatsanos NP; Nishikawa RM
    IEEE Trans Med Imaging; 2002 Dec; 21(12):1552-63. PubMed ID: 12588039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breast cancer diagnosis in digitized mammograms using curvelet moments.
    Dhahbi S; Barhoumi W; Zagrouba E
    Comput Biol Med; 2015 Sep; 64():79-90. PubMed ID: 26151831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcalcification detection in full-field digital mammograms: A fully automated computer-aided system.
    Basile TMA; Fanizzi A; Losurdo L; Bellotti R; Bottigli U; Dentamaro R; Didonna V; Fausto A; Massafra R; Moschetta M; Tamborra P; Tangaro S; La Forgia D
    Phys Med; 2019 Aug; 64():1-9. PubMed ID: 31515007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wavelet-based algorithm for detecting clustered microcalcifications in digital mammograms.
    Lado MJ; Tahoces PG; Méndez AJ; Souto M; Vidal JJ
    Med Phys; 1999 Jul; 26(7):1294-305. PubMed ID: 10435531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast Cancer Diagnosis in Digital Mammography Images Using Automatic Detection for the Region of Interest.
    Ramadan SZ; El-Banna M
    Curr Med Imaging; 2020; 16(7):902-912. PubMed ID: 33059560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.