BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

748 related articles for article (PubMed ID: 29916015)

  • 1. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes.
    Singh RN; Singh NN
    Adv Neurobiol; 2018; 20():31-61. PubMed ID: 29916015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.
    Singh NK; Singh NN; Androphy EJ; Singh RN
    Mol Cell Biol; 2006 Feb; 26(4):1333-46. PubMed ID: 16449646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene.
    Seo J; Singh NN; Ottesen EW; Sivanesan S; Shishimorova M; Singh RN
    PLoS One; 2016; 11(4):e0154390. PubMed ID: 27111068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene.
    Singh NN; Del Rio-Malewski JB; Luo D; Ottesen EW; Howell MD; Singh RN
    Nucleic Acids Res; 2017 Dec; 45(21):12214-12240. PubMed ID: 28981879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolving concepts on human SMN pre-mRNA splicing.
    Singh RN
    RNA Biol; 2007; 4(1):7-10. PubMed ID: 17592254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes.
    Singh NN; Seo J; Rahn SJ; Singh RN
    PLoS One; 2012; 7(11):e49595. PubMed ID: 23185376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA in spinal muscular atrophy: therapeutic implications of targeting.
    Singh RN; Seo J; Singh NN
    Expert Opin Ther Targets; 2020 Aug; 24(8):731-743. PubMed ID: 32538213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.
    Singh NN; Lee BM; DiDonato CJ; Singh RN
    Future Med Chem; 2015; 7(13):1793-808. PubMed ID: 26381381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splicing of the Survival Motor Neuron genes and implications for treatment of SMA.
    Bebee TW; Gladman JT; Chandler DS
    Front Biosci (Landmark Ed); 2010 Jun; 15(3):1191-1204. PubMed ID: 20515750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model.
    Singh NN; Singh RN
    RNA Biol; 2011; 8(4):600-6. PubMed ID: 21654213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions.
    Singh NN; Lee BM; Singh RN
    Ann N Y Acad Sci; 2015 Apr; 1341():176-87. PubMed ID: 25727246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in Spinal Muscular Atrophy cells.
    Pagliarini V; Guerra M; Di Rosa V; Compagnucci C; Sette C
    J Neurochem; 2020 Apr; 153(2):264-275. PubMed ID: 31811660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat increases full-length SMN splicing: promise for splice-augmenting therapies for SMA.
    Dominguez CE; Cunningham D; Venkataramany AS; Chandler DS
    Hum Genet; 2022 Feb; 141(2):239-256. PubMed ID: 35088120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual masking of specific negative splicing regulatory elements resulted in maximal exon 7 inclusion of SMN2 gene.
    Pao PW; Wee KB; Yee WC; Pramono ZA
    Mol Ther; 2014 Apr; 22(4):854-61. PubMed ID: 24317636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in therapeutic development for spinal muscular atrophy.
    Howell MD; Singh NN; Singh RN
    Future Med Chem; 2014 Jun; 6(9):1081-99. PubMed ID: 25068989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing diverse alternative splicing variants of the highly homologous SMN1 and SMN2 genes by targeted long-read sequencing.
    Dai M; Xu Y; Sun Y; Xiao B; Ying X; Liu Y; Jiang W; Zhang J; Liu X; Ji X
    Mol Genet Genomics; 2022 Jul; 297(4):1039-1048. PubMed ID: 35612622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-(N-ethyl-N-isopropyl)-amiloride enhances SMN2 exon 7 inclusion and protein expression in spinal muscular atrophy cells.
    Yuo CY; Lin HH; Chang YS; Yang WK; Chang JG
    Ann Neurol; 2008 Jan; 63(1):26-34. PubMed ID: 17924536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nusinersen in the Treatment of Spinal Muscular Atrophy.
    Goodkey K; Aslesh T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():69-76. PubMed ID: 30171535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HnRNP C1/C2 may regulate exon 7 splicing in the spinal muscular atrophy gene SMN1.
    Irimura S; Kitamura K; Kato N; Saiki K; Takeuchi A; Gunadi ; Matsuo M; Nishio H; Lee MJ
    Kobe J Med Sci; 2009 Mar; 54(5):E227-36. PubMed ID: 19628962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A negatively acting bifunctional RNA increases survival motor neuron both in vitro and in vivo.
    Dickson A; Osman E; Lorson CL
    Hum Gene Ther; 2008 Nov; 19(11):1307-15. PubMed ID: 19848583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.